首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of laser and plasma arc remelting on the microstructure and properties of plasma-sprayed NiCr-Cr3C2 coatings on steel substrates have been investigated. The microstructure of the coatings has been analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the Cr3C2, δ-(Cr,Ni), Cr7C3 and Cr23C6 phases were obtained for both coatings, before and after remelting treatment. The laser remelting was operated in a continuous way with 800 W power in different scan speed, while the plasma arc remelting was operated with a plasma cladding machine under different scan currents. However, the denser microstructure of both remelted coatings can be obtained, especially for the plasma arc remelted coating. The Vickers microhardness measurement showed certain enhancement values for both remelted coatings. The corrosion behavior was evaluated through salt spray corrosion (SSC) method. Energy-dispersive spectroscopy (EDS) showed that the chloride was produced during SSC process. The higher corrosion resistance for plasma arc remelted coating may be due to the more compact microstructure, less porosity rate and tensile residual stress. Compared with laser remelting method, plasma arc remelting is a cheap, convenient and effective remelting method.  相似文献   

2.
The effects of vacuum annealing and laser remelting on the microstructure and corrosion behaviour of plasma-sprayed Ni-coated WC coatings on steel substrate have been investigated. The laser remelting was operated in a continuous way while the vacuum annealing was operated with clamping the coating on the graphite face in order to avoid decarburization of WC. When compared with the as-sprayed coating, the microstructure of the post-heating treatment coatings has been found to consist of different phases. Moreover, the denser microstructure can be obtained after heating treatment, especially the laser remelting coating. Electron probe micro analyzer (EPMA) shows that the chemical composition remained largely unchanged except the “bumps” at the interface for as-sprayed and vacuum annealing coatings. The more uniform composition was obtained for laser remelting coating. The Vickers microhardness measurement shows a very slightly enhancement for post-heating treatment coatings, which may be duo to the lamellar structure, lower contemt and bulky of carbide for coatings. However, salt spray corrosion (SSC) show the laser remelting coating has the best corrosion resistance, which is due to its low number defects and uniform distribution of the phase and composition.  相似文献   

3.
It is commonly observed that there is a performance gap between the corrosion resistance of thermally sprayed coatings and the equivalent bulk material. This is attributed to the significantly modified microstructure of the sprayed coatings. However, currently there is no detailed understanding of which aspects of microstructural modification are primarily responsible for this performance gap. In this work several deliberately microstructurally modified versions of the Ni-based superalloy Inconel 625 were produced. These were subjected to potentiodynamic electrochemical testing in 0.5 M H2SO4 to investigate the links between specific microstructural features and electrochemical behaviour. Samples were prepared by high-velocity oxy-fuel (HVOF) thermal spraying, laser surface remelting using a high power diode laser and conventional powder sintering. Microstructural features were examined by optical and scanning electron microscopy and X-ray diffraction. Potentiodynamic testing was carried out on the following forms of Inconel 625: wrought sheet; HVOF sprayed coatings; sintered powder compacts; laser melted wrought sheet and HVOF sprayed coatings. Using the corrosion behaviour, i.e. passive current density, of the wrought sheet as a baseline, the performance of different forms of Inconel 625 was compared. It is found that a fine dendritic structure (with associated microsegregation) produced by laser remelting wrought sheet has no significant effect on corrosion performance. Up to 12% porosity in sintered powder samples increases the passive current density by a factor of only around 2. As observed previously, the passive current density of HVOF sprayed coatings is 20-40 times greater. However, HVOF coatings subjected to laser surface remelting are found to have a passive current density close to that of wrought material. It is concluded that, whilst porosity in coatings produces some decrease in corrosion resistance, the main contributing factor is the galvanic corrosion of localised Cr-depleted regions which are associated with oxide inclusions within HVOF sprayed samples.  相似文献   

4.
Studies have shown that microstructures formed by post-laser remelting of air plasma sprayed coatings exhibit densification but also numerous macrocracks due to the rapid cooling and thermal stresses. In laser-assisted air plasma spraying (LAAPS) process, the laser beam interacts simultaneously with the plasma torch in order to increase the temperature of the coating and possibly remelt the coating at the surface. As a result, the microstructure is partially densified and macrocracks, which are generally produced in the post-laser irradiation treatment, may be inhibited. In this paper, LAAPS was performed to improve the hardness and wear resistance of Al2O3-13%TiO2 coatings. These coatings prepared by air plasma spraying (APS) are widely used to protect components against abrasive wear at low temperatures. The coating microstructure was characterized by SEM and X-ray diffraction. The mechanical characterization was done by hardness measurements, erosive wear tests and abrasion wear tests. Results showed that laser assistance may improve the microstructural and mechanical properties. Phenomena involved in LAAPS of alumina-titania coatings are discussed in this paper.  相似文献   

5.
陈枭 《表面技术》2012,41(2):23-25,46
采用低压等离子喷涂技术在310S不锈钢表面制备MoB/CoCr梯度涂层,然后对MoB/CoCr涂层进行激光重熔处理,对重熔后涂层的组织结构及性能进行了研究。研究结果表明,激光重熔后,涂层表面平整致密,截面的显微组织呈树枝晶—胞状晶—平面晶过渡;激光重熔过程中,微熔的310S基体元素与熔化的涂层元素发生对流扩散现象,涂层中出现Fe元素成分;激光重熔后,MoB/CoCr层的硬度明显提高。  相似文献   

6.
Graphite is one of the candidate materials proposed for application in pyrochemical reprocessing plants involving aggressive molten chloride environment. Post treatments are promising techniques for the improvement of properties of thermal spray coatings for different industrial applications. In the present work, the effect of post treatments like vacuum annealing (VA) and laser melting (LM) on the microstructure and chemical modification of plasma sprayed Al2O3-40 wt.% TiO2 coatings over high density (HD) graphite substrates has been investigated. When compared with sprayed coatings (SC), VA coatings showed cluster morphology and LM coatings exhibited homogenous microstructure. On laser melted surfaces networks of cracks were observed. XRD studies showed that the metastable γ-Al2O3 phase present in the SC is transformed to stable α-Al2O3 after post treatments. In LM coatings Al2TiO5 phase was more predominant in contrast to SC and VA coatings. The microhardness enhancement was observed in case of LM coating compared to the VA and SC. Due to elimination of coating defects in LM samples, there is a considerable reduction in the surface roughness.  相似文献   

7.
Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.  相似文献   

8.
Summary

It has been recently reported that porous Ti-N sprayed coatings can be made fine-structured by laser irradiation. This paper describes an investigation of the effects of infiltrated metal species on the wear resistance of Ti-N remelted layers.

Non-ferrous metal powders were sprayed on SS400 steel plate substrates in an argon atmosphere. The coating thickness was around 200 μm. Pure titanium was also sprayed on the non-ferrous sprayed coatings in a nitrogen atmosphere. The coating thickness was around 400 μm. Coating specimens consisting of non-ferrous and Ti-N layers were remelted by laser in a nitrogen atmosphere. The remelted layers of the coatings had a fine microstructure with a hardness value above HV1000. The wear resistance of the Ti-N coatings was appreciably improved by remelting.  相似文献   

9.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

10.
激光重熔纳米Al2O3-13%TiO2陶瓷涂层组织及性能   总被引:2,自引:0,他引:2  
为了进一步提高等离子喷涂纳米Al2O3-13%TiO2(质量分数, 下同)复合陶瓷涂层的性能,在γ-TiAl基体材料表面采用激光重熔工艺对涂层进行处理,研究了激光重熔对涂层微观组织和性能的影响.用扫描电镜(SEM)和显微硬度计分析了涂层形貌、微观结构和显微硬度,同时对涂层的磨损特性进行了考察.结果表明,等离子喷涂纳米陶瓷涂层由纳米颗粒完全熔化区和部分熔化区两部分组成,仍然具有等离子喷涂态的典型层状结构.经过激光重熔后,形成了致密细小的等轴晶重熔区、烧结区和残余等离子喷涂区,由于激光快速加热和快速冷却加工特点,在重熔区仍保留了部分来源于原等离子喷涂部分熔化区的残留纳米粒子.与常规等离子喷涂陶瓷涂层相比,纳米结构涂层可在一定程度上提高其硬度和耐磨性,经过激光重熔后其硬度和耐磨性进一步提高.  相似文献   

11.
Investigations of tantalum coatings on steel by vacuum plasma spraying In this work the possibilities of the production of tantalum coatings by vacuum plasma spraying were investigated. Suitable parameters of the vacuum plasma spraying process were determined, and the quality of vacuum plasma sprayed tantalum coatings was evaluated with regard to chemical composition, adhesion strength, density and corrosion behaviour. To obtain high-quality coatings it was necessary to apply sufficient plasma power as well as an optimal injection of spraying powder into the plasma torch. A complete melting of the tantalum powder particles could not he achieved. The coatings obtained showed a good adhesion strength but a low formability (ductility). The corrosion resistance against HCL and HNO3 was evaluated by curves of the current density versus potential. With the aid of the passive current density it was determined that the corrosion resistance of the sprayed coatings was not as excellent as of compact tantalum. The increased surface roughness was not significant with respect to the corrosion behaviour. The reduced corrosion resistance could be caused probably by a high oxygen content of the tantalum powder, especially by oxides around individual powder particles. In contrast to tantalum, vacuum plasma sprayed titanium coatings showed the same corrosion resistance as compact titanium under the same testing conditions.  相似文献   

12.
Surface remelting is an important technique for modifying the microstructure of thermally sprayed coatings as it reduces the porosity and promotes a metallurgical bond between substrate and coating. Many studies have been carried out in the field of materials selection and surface engineering in an attempt to reduce cavitation damage. In this work, an Fe-Mn-Cr-Si alloy was deposited by arc spraying and then remelted by a plasma-transferred arc process. The base metal was a soft martensitic stainless steel. The influence of remelting current on coating and base metal microstructure and cavitation resistance was studied. The use of a lower mean current and a pulsed arc reduced the thickness of the heat-affected zone. In specimens remelted with constant arc current, dendrites were aligned parallel to the path followed by the plasma torch; while in those remelted with a pulsed plasma arc, the alignment of the microstructure was disrupted. The use of a higher peak current in pulsed-current plasma transferred arc remelting reduced mass loss due to cavitation. Fe-Mn-Cr-Si coatings exhibited cavitation-induced hardening, with martensite formation during cavitation tests. This transformation helps to increase the cavitation resistance of the remelted coating compared with the soft martensitic stainless steel base metal.  相似文献   

13.
洪永昌  夏正文 《电焊机》2005,35(11):6-11,39
介绍了不同基材和涂层激光重熔表面改性的研究现状与进展。着重介绍了等离子喷涂层的激光重熔组织和性能.同时也介绍了其他涂层表面的激光重熔后的组织和性能,而且时激光重熔的计算机数值模拟研究现状和工业领域应用作了综合性介绍,并提出了有待进一步研究的问题。  相似文献   

14.
Thermal spray processes are widely used to deposit high-chromium, nickel-chromium coatings to improve high temperature oxidation and corrosion behavior. However, despite the efforts made to improve the present spraying techniques, such as high-velocity oxyfuel (HVOF) and plasma spraying, these coatings may still exhibit certain defects, such as unmelted particles, oxide layers at splat boundaries, porosity, and cracks, which are detrimental to corrosion performance in severe operating conditions. Because of the process temperature, only mechanical bonding is obtained between the coating and substrate. Laser remelting of the sprayed coatings was studied in order to overcome the drawbacks of sprayed structures and to markedly improve the coating properties. The coating material was high-chromium, nickel-chromium alloy, which contains small amounts of molybdenum and boron (53.3% Cr, 42.5% Ni, 2.5% Mo, 0.5% B). The coatings were prepared by HVOF spraying onto mild steel substrates. A high-power, fiber-coupled, continuous-wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF-sprayed coating using different levels of scanning speed and beam width (10 or 20 mm). Coating that was remelted with the highest traverse speed suffered from cracking because of the rapid solidification inherent to laser processing. However, after the appropriate laser parameters were chosen, nonporous, crack-free coatings with minimal dilution between coating and substrate were produced. Laser remelting resulted in the formation of a dense oxide layer on top of the coatings and full homogenization of the sprayed structure. The coatings as sprayed and after laser remelting were characterized by optical and electron microscopy (OM, SEM, respectively). Dilution between coating and substrate was studied with energy dispersive spectrometry (EDS). The properties of the laser-remelted coatings were directly compared with properties of as-sprayed HVOF coatings.  相似文献   

15.
热喷涂Ni基复合涂层重熔处理的研究现状   总被引:1,自引:1,他引:0  
热喷涂Ni基复合涂层因具有耐磨、耐腐蚀及耐高温等特点,被广泛应用于机械零件的表面修复和保护。但是,热喷涂层为典型的层状结构,具有微缺陷含量较高、与基体结合强度低等特点,难以适应苛刻的工作环境,其应用和发展受限。重熔处理可以消除热喷涂层的层状结构,消除或部分消除孔隙、裂纹等微缺陷,使涂层与基体形成冶金结合,提高涂层的使用性能。本文首先介绍了几种适用Ni基复合涂层的重熔技术(即激光重熔、火焰重熔、感应重熔等),随后介绍了重熔处理对Ni基复合涂层表面完整性(即微缺陷、结合强度和硬度)的影响,接着分析了重熔处理对Ni基复合涂层两种服役性能(即耐磨性、耐腐蚀性能)的影响,最后总结了目前在关于Ni基复合涂层重熔技术研究中存在的问题,进而探讨了相应的解决方案,并指出挖掘新的表面重熔技术和对不同的材料体系进行针对性研究是未来重点发展的方向。  相似文献   

16.
Post-treatment of thermal spray coatings on magnesium   总被引:1,自引:0,他引:1  
Magnesium alloys have a beneficial combination of high strength to weight ratio, good machinability and high recycling potential. Despite this, the application of magnesium still is behind that of other constructive materials mainly due to low wear and corrosion resistance. For more demanding applications, a large amount of surface treatment methods are developed to overcome this problem. Thermal spraying is an efficient and flexible method of coating deposition and is widely used for protection of different materials against corrosion and wear. Nevertheless, the bonding of thermal spray coatings on magnesium alloys is not sufficient, so the following post-treatment processes are needed. One of such possibilities is high energy beam treatment of thermally sprayed coatings. During the heat treatment of magnesium substrates with coating the remelting of coating and a thin surface layer of substrate occurs. Depending on the combination of applied coating system and treatment method, different processes can be realised in modified layers: the alloying of magnesium substrate with other elements to improve corrosion properties, redistribution of hard particles from composite coating and new phases formation during the processing to improve the wear resistance of magnesium alloys. In the present work some examples concerning the laser and electron beam treatment of aluminium based composite coatings as well as infra red irradiation of zinc based coatings are described. Coatings are deposited on magnesium substrates (AM20, AZ31, AZ91) by arc spraying with Zn, ZnAl4 and ZnAl15 solid wires and cored wires in aluminium core with powder filling containing different hard particles, such as boron, silicon and tungsten carbide or titanium oxide. Remelting of thermal spray coatings is carried out by means of continuous irradiation of СО2-laser in nitrogen or argon atmosphere, electron beam in vacuum and focused tungsten halogen lamp line heater in atmosphere. Microstructure of sprayed coatings as well as that of modified surface layers is investigated by metallographic methods. Corrosion properties are estimated by electrochemical measurements. Abrasion wear resistance of the modified layers is determined by scratch test, corundum grinding disk test and Rubber wheel test. It is shown that all methods applied for processing of thermal spray coatings lead to formation of modified surface layers in magnesium substrate with improved wear and corrosion properties. Different mechanisms of microstructure formation such as redistribution of chemical composition of composite coating components, partial remelting of hard phase particles, and new phases formation are discussed. Electrochemical behaviour of modified surface layers is mostly improved due to alloying, homogenization of element distribution and strong decrease of as-sprayed coating porosity. Abrasion wear resistance of processed magnesium substrates strongly depends on the microstructure and usually is 5 to 20 times higher compared with base material.  相似文献   

17.
The vacuum plasma sprayed CoNiCrAlY coatings are modified by filtered cathodic vacuum arc deposition aluminizing. The microstructure and oxidation resistance of the coatings are investigated. The parabolic law is obeyed for the aluminized coatings after oxidation at 1100 °C for 100 h. Its parabolic kinetic constant is 0.080 mg2/cm4 h, which is lower than that of as-sprayed coatings. The continuous and dense Al2O3 scale is formed earlier due to the increase of Al concentration, and the spinels hardly exist. The oxidation resistance is improved obviously after filtered cathodic vacuum arc deposition aluminizing.  相似文献   

18.
To develop a composite material with good mechanical and radiation shielding properties, the Fe–Ni–B (Fe67.5Ni23.5B9, wt. %) coatings onto 1Cr18Ni9Ti stainless steel substrate (SS, same as below) were prepared using air-plasma spraying (APS) technique in this work. A remelting process (1050 °C/2 h) was performed on the Fe–Ni–B coatings laminated composite under vacuum condition. The microstructure, phase composing, adhesion strength, Vickers hardness distribution and residual stress of Fe–Ni–B coatings before and after the remelting process were contrastively characterized. The results show that the remelting process decrease the coating defects and make the coating more cohesive and stable. The element diffusion and new compounds formation within the coating and interface area improves the adhesion and thermal fatigue of Fe–Ni–B coatings. In addition, the drop of variability of Vickers hardness data and residual stress level qualitatively identify that the Fe–Ni–B coatings possess more consistent microstructure and mechanical integrity after the remelting process.  相似文献   

19.
铜基体上等离子体喷涂钨涂层性能研究   总被引:1,自引:0,他引:1  
介绍了铜基体上等离子喷涂1 mm钨涂层核聚变试验装置壁材料的制备,并对真空和大气等离子体喷涂钨涂层性能进行了比较研究,内容主要包括微观形貌、气孔率、杂质含量、结合强度和热负荷性能.结果表明,气孔率和氧杂质含量差异是大气和真空等离子体喷涂钨涂层热负荷性能差异的主要原因.  相似文献   

20.
用激光重熔法提高铝硅合金的耐磨性   总被引:4,自引:1,他引:4  
研究了激光重熔3种火焰喷涂层的强化效果。分析了激光重熔前后涂层的化学成分、显微组织、相结构以及显微硬度变化,进行了涂层的磨损试验。结果表明,激光重熔使涂层显微组织细化,质量明显改善,耐磨性能明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号