共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
频谱感知的第一步就是采集无线信号进行分析,越来越高的采样率成为宽带频谱感知研究中的难点。实际通信中主用户占用频谱具有稀疏特性,符合压缩感知理论的前提条件。因此,本文利用分布式压缩感知实现宽带频谱感知,提出基于差分信号分布式压缩感知(DS_DCS)的加权宽带频谱感知算法。该算法针对宽带频谱采样率高的问题,利用压缩感知技术降低采样率,同时引入差分处理方法降低计算复杂度;又针对单点检测带来的深衰落、隐节点以及抗噪声能力差等问题,采用分布式感知系统进行多节点协同检测并利用信噪比的估计对信号进行加权处理。仿真证明,该算法能有效降低各节点采样率,大幅提高系统检测概率,显著改善系统对噪声的鲁棒性。 相似文献
4.
针对宽带压缩频谱感知算法在未知稀疏度条件下重构频谱效果不理想的问题,提出一种自适应阈值选择的改进型分段正交匹配追踪(Adaptive Threshold Option-Improved Stagewise Orthogonal Matching Pursuit, ATO-IStOMP)算法,该算法根据迭代残差的分布特性自适应地调整原子选择判决门限,使其每次迭代能够高效选择多个原子作为候选集,同时该算法利用残差比阈值对迭代终止条件进行修正,能够实现重构算法的盲停止,增强算法在低信噪比环境下的鲁棒特性。仿真结果表明,ATO-IStOMP算法能够实现对原始信号的盲重构,且在低信噪比环境下的重构性能良好。 相似文献
5.
在认知无线电(CR)网络中进行频谱共享接入,首要的任务是进行频谱感知,并发现频谱空洞。基于认知无线网络中信号频域的固有稀疏性,本文结合了压缩感知(CS)技术与加权平均一致(weighted average consensus)算法,建立了分布式宽带压缩频谱感知模型。频谱感知分为两个阶段,在感知阶段,各个CR节点对接收到的主用户信号进行压缩采样以减少对宽带信号采样的开销和复杂度,并做出本地频谱估计;在信息融合阶段,各CR节点的本地频谱估计结果以分布式的方式进行信息融合,并得到最终的频谱估计结果,获得分集增益。仿真结果表明,结合压缩感知与加权平均一致算法增强了频谱感知的性能,比在相同的CR网络中使用平均一致算法时有了性能上的提升。 相似文献
6.
频谱感知是认知无线电技术的基础,随着通信技术不断发展,越来越高的采样速率成为一大瓶颈.实际应用中频谱占用通常具有稀疏性,根据这一特点并结合频谱检测要求,本文提出一种基于差分信号压缩感知(Differential SignalCompressed Sensing,DSCS)的宽带频谱感知方法.该方法在能量检测法的基础上引入压缩感知理论(compressed sensing,CS),使系统能以远低于奈奎斯特采样速率的速率无损采样,降低对硬件的要求;为降低计算量、提高算法稳定性,采用检测差分信号代替检测信号本身作为判断频谱占用变更的依据;引入精度作为算法的迭代停止条件,可根据需要灵调整算法准确度、降低计算复杂度.仿真表明,适当精度下DSCS法能大幅降低迭代次数、减少计算量,并获得更好的检测性能. 相似文献
7.
针对认知无线电网络共享频谱资源的特征,本文提出一种基于扩散机制的分布式宽带压缩频谱感知方法。该算法包含两个工作阶段。在第一个阶段,每个认知用户对观测信号进行压缩感知和独立重构,产生本地频谱估计;在第二阶段,各个认知用户根据扩散机制协作更新频谱估计信息,实现最优估计。仿真结果表明,该算法与一致性分布式压缩频谱感知方法相比,可以快速增强认知无线电网络频谱感知能力,可应用于动态拓扑结构的认知无线电网络。 相似文献
8.
9.
调制宽带转换器(Modulated Wideband Converter, MWC)压缩采样应用于频谱感知的一个基本前提是信号在频域上的稀疏性。如果信号不稀疏,将导致MWC重构结果不正确。该文提出了一种MWC压缩采样重构成败的判定方法。该方法利用连续两次重构得到的子带能量之间的相关性进行判决。仿真结果表明,该方法能够较准确地判断重构是否成功,应用于认知无线电频谱感知中能够避免频谱不稀疏时认知用户对主用户造成干扰,达到保护主用户的目的。 相似文献
10.
该文采用随机矩阵理论(RMT)直接对压缩采样得到的观测数据进行分析,设计出了一种基于广义似然比检验(GLRT)的非重构宽带压缩频谱感知新算法。该算法无需任何先验知识就能对宽带频谱中的每个子带进行盲检测。此外,为了减轻次用户(SU)在数据获取和频谱感知过程中的通信开销,该文提出一种基于传感器节点(SN)辅助感知的合作频谱感知架构。理论分析和仿真结果均表明,与传统基于信号重构的GLRT感知算法以及Roy最大根检测(RLRT)算法相比,该算法不仅具有计算复杂度低、开销小、感知性能稳定等诸多优点;而且只需较少的SN就能获得较好的检测性能。 相似文献
11.
Spectrum sensing is an essential ability to detect spectral holes in cognitive radio (CR) networks. The critical challenge to spectrum sensing in the wideband frequency range is how to sense quickly and accurately. Compressive sensing(CS) theory can be employed to detect signals from a small set of non-adaptive, linear measurements without fully recovering the signal. However, the existing compressive detectors can only detect some known deterministic signals and it is not suitable for the time-varying amplitude signal, such as spectrum sensing signals in CR networks. First, a model of signal detect is proposed by utilizing compressive sampling without signal recovery, and then the generalized likelihood ratio test (GLRT) detection algorithm of the time-varying amplitude signal is
derived in detail. Finally, the theoretical detection performance bound and the computation complexity are analyzed. The comparison between the theory and simulation results of signal detection performance over Rayleigh and Rician channel demonstrates the validity of the performance bound. Compared with the reconstructed spectrum sensing detection algorithm, the proposed algorithm greatly reduces the data volume and algorithm complexity for the signal with random amplitudes. 相似文献
12.
To solve the problem of estimating the locations of sensor nodes in wireless sensor networks where most nodes are without an effective positioning device, a novel range-free localization algorithm—weighted centroid localization based on compressive sensing (WCLCS) is proposed. WCLCS makes use of compressive sensing to get decomposition coefficients between each nonbeacon node and beacon nodes. According to these coefficients, WCLCS algorithm decides the weighted value of each beacon node for Centroid and estimates the locations of nonbeacon nodes. The simulation results show that WCLCS has better localization performance than LSVM. 相似文献
13.
Compressed sensing offers a new wideband spectrum sensing scheme in Cognitive Radio (CR). A major challenge of this scheme
is how to determinate the required measurements while the signal sparsity is not known a priori. This paper presents a cooperative sensing scheme based on sequential compressed sensing where sequential measurements are
collected from the analog-to-information converters. A novel cooperative compressed sensing recovery algorithm named Simultaneous
Sparsity Adaptive Matching Pursuit (SSAMP) is utilized for sequential compressed sensing in order to estimate the reconstruction
errors and determinate the minimal number of required measurements. Once the fusion center obtains enough measurements, the
reconstruction spectrum sparse vectors are then used to make a decision on spectrum occupancy. Simulations corroborate the
effectiveness of the estimation and sensing performance of our cooperative scheme. Meanwhile, the performance of SSAMP and
Simultaneous Orthogonal Matching Pursuit (SOMP) is evaluated by Mean-Square estimation Errors (MSE) and sensing time. 相似文献
14.
Hassanieh等设计了一种基于稀疏傅里叶变换的实时宽带频谱感知和解译技术BigBand,该技术利用3台通用低速采集卡,实现最多2个混叠稀疏信号的解译。本文基于BigBand给出一种利用多通道低速采集卡宽带频谱感知设计方案,实现用低速采样解决宽频范围内多稀疏信号的快速感知解译。同时给出了一种该方案的实验验证方法。实验结果表明,四通道BigBand能支持同一频点最多3个信号混叠的恢复。 相似文献
15.
Wideband spectrum sensing is a critical component of a functioning cognitive radio system. Its major challenge is the too high sampling rate requirement. Compressive sensing (CS) promises to be able to deal with it. Nearly all the current CS-based compressive wideband spectrum sensing methods exploit only the frequency sparsity to perform. This paper sets up a new signal model which is sparse in both temporal and frequency domain. Motivated by the achievement of a fast and robust detection of the wideband spectrum change, total variation minimization is incorporated to exploit the temporal and frequency structure information to enhance the sparsity level. As a sparser vector is obtained, the spectrum sensing period would be shortened and sensing accuracy would be enhanced. Both theoretical analysis and numerical experiments demonstrate the performance improvement. 相似文献
16.
基于认知无线电的动态频谱接入需对宽带信道进行频谱感知,而越来越高的采样速率日益成为宽带频谱感知的瓶颈。压缩感知作为一种新的信号获取技术为亚奈奎斯特采样速率下的宽带频谱感知提供了一种可行方案。在相关应用场景中,如果能够挖掘相关先验信息并在重构算法中整合这些信息,将大幅提高压缩感知的性能。本文基于压缩感知技术,利用信道的划分信息及宽带信号的组稀疏特性,提出了一种组稀疏贪婪算法GOMP。该方法在成熟的贪婪算法基础上,利用子信道内多频点的组测量信息,根据组测量的概率分布特性来识别宽带信道的活动子信道。这种组测量识别方式使算法能以较少的观测数据实现对宽带信道的快速准确感知,极大地降低了宽带频谱感知所需的采样速率。实验结果表明:该算法比传统的OMP算法及BP算法不仅具有更好的重构效果及频谱检测性能,而且具有更好的压缩性能及实时性能。 相似文献
17.
Taherpour A. Gazor S. Nasiri-Kenari M. 《Wireless Communications, IEEE Transactions on》2009,8(5):2182-2186
In this paper, we divide a wide frequency range into multiple subbands and in each subband detect whether in a primary user (PU) is active or not. We assume that PU signal at each subband and the additive noise are white zeromean independent Gaussian random processes with unknown variances. We also assume that at least a minimum given number of subbands is vacant of PU signal and propose an invariant Generalized Likelihood Ratio (GLR) detector. The concept of the grouping of subbands allows faster spectrum sensing of a subset of subbands which may be occupied by a specific PU. Also, we evaluate trade-offs involved in the proposed algorithms by simulation. 相似文献
18.
Rohit Nigam Santosh Pawar Manish Sharma 《International Journal of Communication Systems》2021,34(1):e4635
This paper presents the implementation of a modified version of Bayesian relevance vector machine (RVM)‐based compressive sensing method on cognitive radio network with wavelet transform for spectrum hole detection. Bayesian compressive sensing is used in this work to deal with the complexity and uncertainty of the process. The dependency of the Bayesian compressive sensing on the knowledge of noise levels in the measurement has been relaxed through the proposed Bayesian RVM‐based compressive sensing algorithm. This technique recovers the wideband signals even with fewer measurements maintaining considerably good accuracy and speed. Wavelet transform is used in this paper to enable the detection of primary user (PU) even in the low regulated transmission from unlicensed user. The advantage of this approach lies in the fact that it enables the evaluation of all possible hypotheses simultaneously in the global optimization framework. Simulation study is performed to evaluate the efficacy of the proposed technique over the cognitive radio environment. The performance of the proposed technique is compared with the conventional Bayesian approach on the basis of recovery error, recovery time and covariance to verify its superiority. 相似文献
19.
摘 要:提出了基于Gerschgorin圆盘理论的宽带频谱感知算法:Gerschgorin似然估计算法和Gerschgorin圆盘半径迭代算法。通过在宽带频谱感知中引入Gerschgorin圆盘理论,将认知无线电用户频谱观测数据中噪声圆盘空间和信号圆盘空间进行分离,并基于对主用户所占用子频段集合势的估计,实现对宽带授权频谱中多个子频段状态的监测。为了进一步提高感知性能,还提出利用宽带频谱中主用户信号占用子频段的连续性特性改善算法性能。理论推导和仿真结果表明,在信噪比较小时,Gerschgorin似然估计算法较基于信息论准则的宽带感知算法具有更稳定的检测性能;Gerschgorin圆盘半径迭代算法与传统能量检测方法相比,优势在于不依赖任何噪声功率先验信息,且在采样次数较少情况下的感知错误率较小。因此,基于Gerschgorin圆盘理论的频谱感知更适合于实际CR系统,可为宽带频谱感知提供行之有效的算法实施方案。 相似文献