共查询到17条相似文献,搜索用时 64 毫秒
1.
在利用WiFi信号实现人群计数中,基于信道状态信息幅度(Channel State Information,CSI)存在分类模型滤波不彻底和准确度差的问题,本文提出了一种基于多接收天线之间相位差扩展矩阵信息的支持向量机(Sup-port Vector Machine,SVM)增量学习算法.首先对CSI原始相位数据执行三... 相似文献
2.
提出了一种基于支持向量数据描述(SVDD)的数据约简方法,该方法利用一类学习算法SVDD的特性,通过迭代优化运算有效地实现了对原始训练样本数据的约简。实验数据的结果表明,该方法简单易行,具有稳定性和准确性,能大大缩减原始训练集规模的同时保持原分类问题的识别精度。 相似文献
3.
将支持向量数据描述方法引入到多示例学习中,提出了三种基于SVDD的多示例学习方法:基于包分类和示例分类的SVDD多示例学习方法MI-SVDD和mi-SVDD,以及基于正示例预测的SVDD多示例学习方法SVDD-MILD_I.在MUSK数据集上的实验结果表明,MI-SVDD方法和mi-SVDD方法的精度与MI-SVM方法和mi-SVM的总体相当,SVDD-MILD_I方法的精度比较高,超过了我们已知的目前已发表的最好结果;对COREL图像库进行基于内容的图像检索的实验表明,SVDD-MILD_I方法的精度较高,并且比较好地区分了容易混淆的Beach类图像与Mountains类图像. 相似文献
4.
基于支持向量域描述的学习分类器 总被引:2,自引:1,他引:2
文章在分析支持向量域描述的基础上发展了一类基于描述的学习分类器.该算法在训练时通过在高维特征空间中求取所描述的训练样本的超球体边界,然后通过该边界对样本数据进行分类.文章所获得的学习算法和支持向量机(SVM)和序列最小优化(SMO)算法相比,不仅降低了样本的采集代价,而且在训练速度上有了很大提高.在CBCL人脸库和USPS手写数字识别的实验中,给出了该算法和SVM、SOM算法的实验对比结果,说明了该学习算法的有效性。 相似文献
5.
6.
为了有效的解决支持向量机(SVM)在文本分类中的增量学习问题,文中提出了一种基于树结构的在线学习方法-HISVML.该方法通过将增量学习任务限制在分类子树中来达到减少工作量的目的.实验证明,HISVML比普通的单层增量学习器训练时间短、准确率高. 相似文献
7.
核函数的选择对支持向量数据描述算法(SVDD)的性能有重要的影响,是SVDD研究的一个核心问题.通过对SVDD算法中常用核函数进行分析,验证了高斯核函数在单值分类问题上具有一定的优越性,并分别探讨相同样本数据集不同规模样本和不同样本数据集相似规模样本中,高斯核参数对SVDD分类器的影响.实验表明,基于高斯核函数的支持,向量数据描述算法适合于小规模样本的单值分类问题. 相似文献
8.
针对支持向量机(svM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。 相似文献
9.
一种改进的SVM支持向量分类方法 总被引:1,自引:0,他引:1
提出了一种改进的支持向量分类方法,根据支持向量机中支持向量不会出现在两类样本集间隔以外的正确划分区的理论,通过引入类质心距等概念,从而较好地解决了当两类样本集混淆严重的时候如何更加精确地进行剔除混淆点,保证算法泛化性的问题。实验表明,采用这种改进的算法在两类训练样本集混淆较严重时能较好地解决泛化性问题。 相似文献
10.
一种改进的支持向量机BS-SVM 总被引:1,自引:1,他引:0
提出了一种改进的SVM:BS-SVM,它先对训练样本进行分类,根据每个样本到模式类样本均值的距离,将训练样本分为三种:好样本、差样本、边界样本,然后用边界样本训练得到分类器.实验表明,BS-SVM相比SVM在分类正确率、分类速度以及使用的样本规模上都表现出了一定的优越性. 相似文献
11.
本文构造了一种带拒识能力的双层支持向量模型分类器.在训练学习过程中,首先对各类样本特征空间求取最小的包含球形边界,得到各类样本的球形支持向量域表示.这样对于输入的非目标样本即可利用各类的支持向量域进行拒识或接受处理;然后针对接受的样本再利用基于超平面分割的SVM训练器进行分类判决.无论是在第一层求取边界的优化问题中,还是在第二层的分类超平面优化过程中,都采用相乘性更新迭代规则直接求解,优化速度与最小二乘支持向量机(LS-SVM)相当.仿真实验表明本文提出的通过引入拒绝层和判决层的新支持向量模型策略是合理可行的,在实际模式识别领域具有广阔的应用前景. 相似文献
12.
13.
14.
类似大多数基于统计的纯数据驱动机器学习方法一样,标准支持向量机回归也是建立在对纯样本数据学习基础上的,需要足够多标记好的样本数据才能保证模型的性能,当样本数据集趋于无穷大时,学习模型也越趋向于真实模型。然而在实际应用中,这个条件往往很难得到满足。如果能将样本数据的先验知识融合到支持向量机回归中,就可以弥补样本不足的缺陷。本文提出一种融合先验知识的支持向量机回归方法,给出了理论推导的一般形式,并通过实验证明该方法的有效性。 相似文献
15.
一种具有渐进学习能力的融合方法 总被引:3,自引:0,他引:3
运行在动态与未知环境下的多传感器系统往往会面临环境与自身结构的渐进式变化,导致一般的具有学习能力的融合方法很难适用.本文提出了一种具有渐进学习能力的融合方法,它具有良好的自适应性和鲁棒性.该方法由一种名为接受域加权回归(Receptive Field Weighted Regression)的渐进式学习算法和加权平均的融合算法组成.最后以三个摄像机联合定位作为研究对象,对该方法进行了仿真,验证了其有效性,同时还和基于BP神经网络的融合方法进行了比较. 相似文献
16.
17.
一种改进的渐进直推式支持向量机分类学习算法 总被引:1,自引:1,他引:1
基于支持向量机的直推式学习是统计学习理论中一个较新的研究领域。较之传统的归纳式学习方法而言,直推式学习往往更具有普遍性和实际意义。针对渐进直推式支持向量机学习算法存在的缺陷,提出了一种改进算法。该算法利用区域标注法取代前者的成对标注法,在继承了其渐进赋值和动态调整的规则的同时,提高了算法的速度;根据每个无标签样本的标注可信度自适应地对其赋予不同的影响因子,从而控制训练误差的传递和积累,提高了算法的性能。雷达实测数据实验结果表明该算法是有效的。 相似文献