共查询到19条相似文献,搜索用时 171 毫秒
1.
基于奇异值分解的图像去噪 总被引:3,自引:0,他引:3
提出了利用奇异值分解去除图像噪声的方法。从矩阵的角度出发,通过对图像矩阵进行奇异值分解,将包含图像信息的矩阵分解到一系列奇异值和奇异值矢量对应的子空间中,然后通过有效奇异值重构图像矩阵达到去噪目的。试验利用MATLAB通过对MRI(核磁共振)医学图像进行去噪处理,验证了奇异值分解的去噪效果,并且通过对多幅图像的试验结果进行分析,得到了去噪重构图像时所需有效奇异值数目的统计值。 相似文献
2.
基于稀疏码收缩的图像去噪 总被引:2,自引:0,他引:2
数据的描述方法对提取数据特征至关重要,通常这种描述方法是基于数据的线性变换。传统的的傅立叶变换、离散余弦变换、主分量分析等线性变换方法都是基于全局变换的思想,无法反映图像在时频域的局部特征。独立分量分析是一种多维数据线性变换的方法,它从数据间的高阶统计特性出发,提取的图像数据特征基函数在空间频域中体现了方向性和局部性,能很好的自适应图像数据,并且其所得系数具有稀疏分布的特性。用它对无噪声图像数据进行学习,利用得到的稀疏码变换矩阵对噪声图像数据进行稀疏码变换,得到稀疏成分,并结合最大似然估计得到的软门限算子对该稀疏成分进行收缩,从而达到了去除图像噪声的目的。试验表明该方法在去噪效果和保存图像细节方面明显优于传统的维纳滤波方法。 相似文献
3.
提出一种基于混合字典的图像稀疏分解去噪方法。使用小波包函数和离散余弦函数构成混合字典,采用匹配追踪算法对图像进行稀疏分解,提取含噪图像中的稀疏成分,最后利用稀疏成分进行图像重构,达到去除图像中噪声的目的。实验中与单一字典稀疏分解去噪算法进行了对比,结果表明,所提出的混合字典稀疏去噪算法可有效提取图像中的稀疏结构,改善重构图像的主客观质量。 相似文献
4.
针对实木地板的图像获取过程中,所产生的噪声问题,引入了K-SVD字典的学习算法,提出了一种图像的有用信息稀疏分解去噪的方法,目的是有效的保留实木地板的有用纹理信息,并抑制其中掺杂的噪声。通过对图像稀疏分解后得到的值,来进行图像重构,就可以达到图像的去噪目的。首先,构造一个初始化的DCT字典,对图像分块处理;接着,在这个初始化字典的基础之上,进行纹理信息的稀疏分解,同时,对它们之间的残差值进行奇异值分解,更新字典;最后,利用得出的最优化字典,采用正交匹配重构算法,完成去噪图像的重建。实验表明,该算法得出的图像主观效果好,减少了去噪后的模糊程度及保留更多细节信息,在不同程度的噪声下,PSNR较高。 相似文献
5.
为解决传统彩色图像去噪算法容易出现细节模糊、伪色彩及去噪效果不佳等问题,文中提出了一种基于本征图像分解的稀疏表示彩色图像去噪算法。利用本征图像分解良好的色彩保持和细节恢复等优点,将含噪彩色图像分解成反映图像真实颜色特征的反射率部分和反映图像亮度特征的光照率部分。一方面,反射率部分仅含有部分孤立噪声点且是具有分段平滑特性的彩色图像,因此文中采用在去除彩色图像轻度污染方面表现良好的基于稀疏表示的彩色图像去噪算法对其进行处理。另一方面,光照率部分包含了主要噪声成分且是具有较强稀疏性的灰度图像,因此文中采用能够保持图像细节的非局部集中稀疏表示灰度图像去噪算法对其进行处理。为了有效地求解所提算法,文中结合正交匹配追踪法和软阈值法设计了一种新的数值解法。数值实验结果表明,新算法明显优于经典的彩色图像去噪算法。以256×256的Boat图像为例,在噪声方差等于20时,新算法的PSNR值比K-SVD算法和NCSR算法分别提高了1.7dB和0.67dB,SSIM值比K-SVD方法和NCSR算法分别提高了0.11和0.09。文中所提算法在提高彩色图像去噪效果的同时能够有效地保留图像细节,在视觉效果和客观评价指标等方面均优于传统的ROF算法、K-SVD算法和NCSR算法。 相似文献
6.
《电子技术与软件工程》2016,(18)
目前超分辨率的研究分成静态图像超分辨率和动态图像超分辨率两大类,静态图像超分辨率是指利用单张低分辨率图像内容来重建出高分辨率图像,本质上高分辨率图像的高频成分不能由原有低频成分算出,故如何补足高频成分以避免模糊现象是提升视觉质量的关键也是研究重点。图像去噪和超分辨率的目的是为了解决数字图像分辨率不足所提出的技术。这个技术主要是应用在某些只能得到单张低分辨率图像的场合,利用仅有的一张低分辨率图像来产生应用上所需的高分辨率图像。稀疏表示作为一种重要的数据编码与表达方式,不仅在人类的视觉认知机理上具有明确的理论依据,而且在信号表达与重建理论方面得到了严格的证明和推导。本文主要采用稀疏表示理论,对图像去噪和超分辨率重建的相关技术与算法进行研究。 相似文献
7.
8.
使用稀疏表示的方法对图像去噪。对于稀疏表示最关键的是稀疏表示系数和自适应字典的确定,如何同时找到这两个最优的参数是研究的主要问题。通过模拟退火算法得到最优的自适应字典与相对应的稀疏系数。用求得的字典和稀疏系数进行逆运算得到去噪后的图像,完成图像去噪。与广泛使用的K-SVD算法对比,所提算法的峰值信噪比提高6.9%,在时间复杂度上改善了13.7%。 相似文献
9.
利用FFT实现基于MP的信号稀疏分解 总被引:7,自引:0,他引:7
该文研究基于Matching Pursuit(MP)方法实现的信号稀疏分解算法,通过对信号稀疏分解中使用的过完备原子库结构特性的分析,提出了一种新的信号稀疏分解算法。该算法首先通过利用原子库的结构特性,很好地处理了稀疏分解过程中计算量和存储量之间的关系。在此基础上,把信号稀疏分解中计算量很大的内积运算转换成互相关运算,最后用FFT实现互相关运算,从而大大提高了信号稀疏分解的速度。算法的有效性为实验结果所证实。 相似文献
10.
该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal to Noise Ratio, PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。 相似文献
11.
Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning 总被引:1,自引:0,他引:1
We present a novel image denoising method based on multiscale sparse representations. In tackling the conflicting problems of structure extraction and artifact suppression, we introduce a correlation coefficient matching criterion for sparse coding so as to extract more meaningful structures from the noisy image. On the other hand, we propose a dictionary pruning method to suppress noise. Based on the above techniques, an effective dictionary training method is developed. To further improve the denoising performance, we propose a multi-stage sparse coding framework where sparse representations are obtained in different scales to capture multiscale image features for effective denoising. The multi-stage coding scheme not only reduces the computational burden of previous multiscale denoising approaches, but more importantly, it also contributes to artifact suppression. Experimental results show that the proposed method achieves a state-of-the-art denoising performance in terms of both objective and subjective quality and provides significant improvements over other methods at high noise levels. 相似文献
12.
基于SVD的小波变换图像去噪方法 总被引:1,自引:0,他引:1
针对传统SVD图像去噪方法的不足,提出了一种基于SVD分解的小波分解图像去噪方法。通过对小波变换的系数矩阵进行奇异值分解,将其中的信号特征成分和噪声分解到不同的正交子空间中,在子空间中选取集成信号特征成分的奇异值矢量进行重构,从而提取出淹没在噪声中的信号成分。实验结果表明该文提出的方法适用于图像信号的提取,与传统的SVD去噪方法相比,它提取出的信号特征成分更完整,信噪比更高。 相似文献
13.
提出了一种多分辨奇异值分解(MSVD)的新框架,并把它应用于多聚焦图像融合中.首先,基于分块算法原理,利用奇异值分解获得具有不同分辨率的一幅近似和三幅细节图像.然后结合重构算法,给出了图像的融合框架.其次,对比基于离散小波变换(DWT)的融合算法,基于MSVD的融合效果更好,而且 MSVD的基向量只依赖于图像本身而不像小波需要固定的基.最后,采用客观性能指标对结果图像进行评价.实验结果表明,本文的方法不仅简单易行,而且图像表现出良好的视觉效果,清晰度和空间频率都有很大提高. 相似文献
14.
Image quality assessment (IQA) is a fundamental problem in image processing. While in practice almost all images are represented in the color format, most of the current IQA metrics are designed in gray-scale domain. Color influences the perception of image quality, especially in the case where images are subject to color distortions. With this consideration, this paper presents a novel color image quality index based on Sparse Representation and Reconstruction Residual (SRRR). An overcomplete color dictionary is first trained using natural color images. Then both reference and distorted images are represented using the color dictionary, based on which two feature maps are constructed to measure structure and color distortions in a holistic manner. With the consideration that the feature maps are insensitive to image contrast change, the reconstruction residuals are computed and used as a complementary feature. Additionally, luminance similarity is also incorporated to produce the overall quality score for color images. Experiments on public databases demonstrate that the proposed method achieves promising performance in evaluating traditional distortions, and it outperforms the existing metrics when used for quality evaluation of color-distorted images. 相似文献
15.
Nonlocal means (NLM) filtering or sparse representation based denoising method has obtained a remarkable denoising performance. In order to integrate the advantages of two methods into a unified framework, we propose an image denoising algorithm through skillfully combining NLM and sparse representation technique to remove Gaussian noise mixed with random-valued impulse noise. In the non-Gaussian circumstance, we propose a customized blockwise NLM (CBNLM) filter to generate an initial denoised image. Based on it, we classify the different noisy pixels according to the three-sigma rule. Besides, an overcomplete dictionary is trained on the initial denoised image. Then, a complementary sparse coding technique is used to find the sparse vector for each input noisy patch over the overcomplete dictionary. Through solving a more reasonable variational denoising model, we can reconstruct the clean image. Experimental results verify that our proposed algorithm can obtain the best denoising performance, compared with some typical methods. 相似文献
16.
Taking into account the morphological diversity of images, this paper presents a novel multiphase image segmentation method that combines image decomposition and fuzzy region competition into a unified model. To efficiently solve the minimization of the energy functional, we design an optimal iteration algorithm which integrates a modified cartoon-texture dictionary learning algorithm and wavelet shrinkage. Compared with the classical fuzzy region competition method, the proposed method not only improves the overall segmentation results, but also has more strong robustness. A series of experimental results demonstrate the applicability and effectiveness of the proposed method. 相似文献
17.
In this paper, we propose a feature discovering method incorporated with a wavelet-like pattern decomposition strategy to address the image classification problem. In each level, we design a discriminative feature discovering dictionary learning (DFDDL) model to exploit the representative visual samples from each class and further decompose the commonality and individuality visual patterns simultaneously. The representative samples reflect the discriminative visual cues per class, which are beneficial for the classification task. Furthermore, the commonality visual elements capture the communal visual patterns across all classes. Meanwhile, the class-specific discriminative information can be collected by the learned individuality visual elements. To further discover the more discriminative feature information from each class, we then integrate the DFDDL into a wavelet-like hierarchical architecture. Due to the designed hierarchical strategy, the discriminative power of feature representation can be promoted. In the experiment, the effectiveness of proposed method is verified on the challenging public datasets. 相似文献
18.
针对图像消噪问题,提出了二维快速小波算法和改进小波包分析算法,通过对图像的消噪处理,二维快速小波算法消噪效果明显,但由于小波包分析算法对上一层的低频部分和高频部分同时进行细分,具有更为精确的局部分析能力,对小波包分析算法进行了改进,消除了频带混叠问题,其消噪效果更佳,可得到更为广泛的应用。 相似文献