首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sound velocity in gaseous pentafluoroethane (HFC-125, CF3CHF2) has been measured by means of a spherical acoustic resonator, Seventy-two sound-velocity values were measured with an uncertainty of ±0.01% at temperatures from 273 to 343 K and pressures from 101 to 250 kPa. The ideal-gas specific heats and the second acoustic-virial coefficients have been determined on the basis of the Sound-velocity measurements. The second virial coefficients calculated from the present sound-velocity measurements agree with literature values which were determined fromPVT measurements by means of a Burnett method.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24 1994, Boulder, Colorado, U.S.A.  相似文献   

2.
A spherical resonator and acoustic signal measurement apparatus have been designed and developed for measuring the speed of sound in the gaseous phase. The inner radius of the spherical resonator, being about 6.177 cm, was determined by measuring the speed of sound in gaseous argon at temperatures between 293 and 323 K and at pressures up to 200 kPa. Measurements of the speed of sound in four halogenated hydrocarbons are presented, the compounds are chlorodifluoromethane (CHClF2 or HCFC-22), 1,1-difluoroethane (CH3CHF2 or HFC-152a), 1,1,1-trifluoroethane (CH3CF3 or HFC-143a), and propane (CH3CH2CH3 or HC-290). Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the present data. The results were compared with those from other studies. In this work, the experimental uncertainties in temperature, pressure, and speed of sound are estimated to be less than ±14 mK, ±2.0 kPa, and ±0.0037%, respectively. In addition, equations for the ideal-gas isobaric specific heat capacity for HFC-152a, HFC-143a, and propane are proposed, which are applicable in temperature ranges 240 to 400 K for HFC-152a, 250 to 400 K for HFC-143a, 225 to 375 K for propane. The purities for each of the samples of HCFC-22, HFC-152a, HFC-143a, and propane are better than 99.95 mass%.  相似文献   

3.
This work presents measurements of the speed-of-sound in the vapor phase of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). The measurements were obtained in a stainless-steel spherical resonator with a volume of 900 cm3 at temperatures between 260 and 380 K and at pressures up to 500 kPa. Ideal-gas heat capacities and acoustic virial coefficients are directly produced from the data. A Helmholtz equation of state of high accuracy is proposed, whose parameters are directly obtained from speed-of-sound data fitting. The ideal-gas heat capacity data are fit by a functions and used when fitting the Helmholtz equation for the vapor phase. From this equation of state other thermodynamic state function are derived. Due to the high accuracy of the equation, only very precise experimental data are suitable for the model validation and only density measurements have these requirements. A very high accuracy is reached in density prediction, showing the obtained Helmholtz equation to be very reliable. The deduced vapor densities are furthermore compared with those obtained from acoustic virial coefficients with the temperature dependences calculated from hard-core square-well potentials.  相似文献   

4.
The second virial coefficients of refrigerants HFC-32 (CH2F2), HFC-23 (CHF3), and HCFC-22 (CHC1F2) have been correlated on the bisis of site site model potential and have been compared with experimental results. The molecular interactions consisted of repulsion dispersion and electrostatic parts. From the site site potentials adjusted to the experimental second virial coefficients, spherically averaged potentials have been determined and a subsequent calculation of gaseous viscosity has been carried out. Agreement between measured and calculated values of second virial coellicients and gaseous viscosity is satisfactory. Calculated values of second virial coefficients and gaseous viscosity beyond available experimental data, therefore. can be assumed as a reliable extrapolation to lower and higher temperatures.  相似文献   

5.
改进了实验室原有的pvT实验台,测量了HFC-227ea气相pvT性质。膨胀法和等容法相结合,仅需一次充注,沿10条定容线测量了共80组实验数据。实验数据的温度范围为310-410K,压力最大到3.2MPa。首先对超临界410K等温线的数据进行了膨胀法分析,建立了压力和密度关系。以此为基础,获得了各条定容线的密度。建立了HFC-227ea的气相状态方程,与已发表的HFC-227ea的pvT数据进行了比较,实验数据的最大压力偏差小于0.07%,与其他人实验数据也符合良好。状态方程还能精确计算气相声速,与实验数据的最大偏差小于0.05%,说明数据和状态方程都是准确可靠的。  相似文献   

6.
Thermodynamic Properties of 1,1,1,2,3,3,3-Heptafluoropropane   总被引:1,自引:0,他引:1  
A vapor pressure equation has been developed for 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) based on previous measurements from 202 to 375K, from which the boiling point of HFC-227ea was determined. Based on the previous pressure–volume–temperature (PVT) measurements in the gaseous phase for HFC-227ea, virial coefficients, saturated vapor densities, and the enthalpy of vaporization for HFC-227ea were also determined. The vapor pressure equation and the virial equation of state for HFC-227ea were compared with the available data. Based on the previous measurements of speed of sound in the gaseous phase for HFC-227ea, the ideal-gas heat capacity at constant pressure and the second acoustic virial coefficient of HFC-227ea were calculated. A correlation of the second virial coefficient for HFC-227ea was obtained by a semiempirical method using the square-well potential for the intermolecular force and was compared with results based on PVT measurements. A van der Waals-type surface tension correlation for HFC-227ea was proposed, based on our previous experimental data by the differential capillary rise method from 243 to 340K.  相似文献   

7.
An apparatus for speed-of-sound measurements with a spherical resonator was adapted for temperatures up to 42(I K. This included new microphones with a special wiring, a pressure indicator which can be thermostatted to 420 K, and some installations to avoid temperature gradients. Calibration of the radius of the resonator with argon was extended to higher temperatures. Speed-of-sound measurements up to 420 K and 0.5 MPa were done onl,l-dilluoroethane (R152a). 1.l,l-trilluoroethane (R 143a ),l,l,l-chlorodifluoroethane (R 142b ), l,1,1,2-tetralluoroethane (R134a), and 2.2.2-trifluoroethanol. The ideal-gas heat capacities coincide with the statistical mechanical values, except for R134a, where our values as well as recent literature data are below the values calculated from spectroscopy. The reduced second virial coefficients can be interpreted in terms of the dipole moment and the angle between dipole moment and molecular axis. For the associated substance trifluoroethanol values of the third virial coefficient are given, which are appreciably negative at low temperatures.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994 Boulder, Colorado, U.S.A.  相似文献   

8.
Measurements of the speed of sound in seven halogenated hydrocarbons are presented. The compounds in this study are 1-chloro-1,2,2,2-tetrafluoroethane (CHClFCF3 or HCFC-124), pentafluoroethane (CHF2 CF3 or HFC-125), 1,1,1-trifluoroethane (CF3CH3 or HFC-143a), 1,1-difluoroethane (CHF2CH3 or HFC-152a), 1,1,1,2,3,3-hexafluoropropane (CF3CHFCHF2 or HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (CF3CH2CF3 or HFC-236fa), and 1,1,2,2,3-pentafluoropropane (CHF2CF2CH2F or HFC-245ca). The measurements were performed with a cylindrical resonator at temperatures between 240 and 400 K and at pressures up to 1.0 MPa. Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the data. The ideal-gas heat capacity of HFC-125 from this work differs from spectroscopic calculations by less than 0.2% over the measurement range. The coefficients for virial equations of state were obtained from the acoustic data and hard-core square-well intermolecular potentials. Gas densities that were calculated from the virial equations of state for HCFC-124 and HFC-125 differ from independent density measurements by at most 0.15%, for the ranges of temperature and pressure over which both acoustic and Burnett data exist. The uncertainties in the derived properties for the other five compounds are comparable to those for HCFC-124 and HFC-125.  相似文献   

9.
The experimental 156PVTx properties of an important binary refrigerant mixture, HFC-32 (difluoromethane)+HFC-125 (pentafluorethane), have been measured for three compositions, i.e., 50, 60, and 80 wt% HFC-32, by a constant-mass-method coupled with expansion procedure in an extensive range of temperaturesT from 320 to 440 K, of pressuresP from 1.8 to 5.3 M Pa, and of densities p from 50 to 124 kg · m–3. The experimental uncertainties of the present measurements are estimated to be within ±7 mK in temperature, ±2 kPa in pressure, ±0.2% in density and ±0.02 wt% of HFC-32. The sample purities are 99.998 wt% for HFC-32 and 99.99 wt% for HFC-125. Seventy-eight second and third virial coeflicients for temperatures from 320 to 440 K have been determined by the present measurements.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

10.
The speed of sound has been measured in the binary gaseous mixture (0.85CH4+0.15C3H8) along seven isotherms at temperatures between 225 and 375 K and at pressures up to 1.4 M Pa. From the measurements, second and third acoustic virial coefficients of the mixture were obtained. These results were analyzed together with values of the second and third acoustic virial coefficients of the two pure components to obtain a set of model intermolecular potential-energy functions for the methane-propane system. Nonpairwise additivity of the intermolecular forces was included in this analysis. Ordinary second and third interaction virial coefficients calculated from the model are reported, as are the second and third virial coefficients of the pure components. Gas densities calculated by means of these virial coefficients for the mixture (0.9298CH4+0.0702C3H8) were found to agree with experimental values at temperatures between 280 and 330 K to within 0.02% at pressures up to 3 MPa and to within 0.08% at 4MPa.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

11.
A new thermodynamic property model for the Helmholtz free energy with rational third virial coefficients for fluid-phase 1,1-difluoroethane (R-152a) was developed. The model was validated by existing experimental data for temperatures from the triple point to 450 K and pressures up to 60 MPa. Reasonable behavior of the second and third virial coefficients was confirmed from intermolecular potential models. The estimated uncertainties are 0.1% in density for the gaseous and liquid phases, 0.4% in density for the supercritical region, 0.05% in speed of sound for the gaseous phase, 2% in speed of sound for the liquid phase, and 1% in specific heat capacities for the liquid phase. From the reasonable behavior of the ideal curves and the third virial coefficients, the model can be assumed reliable in representing the thermodynamic properties not only at states with available experimental data but also at states for which no experimental data are available.  相似文献   

12.
This paper reports experimental results for the viscosity of gaseous mixtures of HFC-134a (1,1,1,2-tetrafluoroethane)+HFC-32 (difluoromethane). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The viscosity was measured for three mixtures containing 25.00, 52.40, and 74.98 mole% HFC-134a in HFC-32. Experimental results for the viscosity at normal pressures show a minimum as plotted against mole fraction in the higher temperature region, which may be the first experimental observation of the minima for dilute binary gaseous mixtures of HFCs. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters were obtained for unlike-pair interactions between HFC-32 and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham was applied to predict the viscosity for the binary gaseous mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan–Starling was applied.  相似文献   

13.
The speed of sound was measured in gaseous WF6 using a highly precise acoustic resonance technique. The data span the temperature range from 290 to 420 K and the pressure range from 50 kPa to the lesser of 300 kPa or 80% of the sample's vapor pressure. At 360 K and higher temperatures, the data were corrected for a slow chemical reaction of the WF6 within the apparatus. The speed-of-sound data have a relative standard uncertainty of 0.005%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. These heat capacities are in reasonable agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.005% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less. The hard-core Lennard–Jones potential was used to estimate the viscosity and the thermal conductivity of dilute WF6. The predicted viscosities agree with published data to within 5% and can be extrapolated reliably to higher temperatures.  相似文献   

14.
An experimental study of the thermodynamic properties of 1,1-difluoroethane   总被引:1,自引:0,他引:1  
Experimental vapor pressures andP--T data of an important alternative refrigerant, 1, 1-difluoroethane (HFC-152a), have been measured by means of a constant-volume method coupled with expansion procedures. SixtyP--T data were measured along eight isochores in a range of temperaturesT from 330 to 440 K, at pressuresP from 1.6 to 9.3 MPa, and at densities from 51 to 811 kg·m–3. Forty-six vapor pressures were also measured at temperatures from 320 K to the critical temperature. The uncertainties of the temperature and pressure measurements are within ±7mK and ±2kPa, respectively, while the uncertainty of the density values is within ±0.1%. The purity of the sample used is 99.9 wt%. On the basis of the measurements along each isochore, five saturation points were determined and the critical pressure was determined by correlating the vapor-pressure measurements. The second and third virial coefficients for temperatures from 360 to 440 K have also been determined.  相似文献   

15.
The viscosity of gaseous HFC-143a(1,1,1-trifluoroethane) was measured with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K and at pressures up to the saturated vapor pressure at each temperature under subcritical conditions or up to 9 MPa under supercritical conditions. Intermolecular potential parameters of HFC-143a for the extended corresponding states were determined from the viscosity data at 0.1 MPa. An empirical viscosity equation as functions of temperature and density is proposed to interpolate the present experimental results.  相似文献   

16.
An experimental study of pressure–volume–temperature–composition (PVTx) properties for binary mixtures of HFC-32 and HFC-134a was conducted in the range of temperatures from 243 to 473 K, pressures up to 16.7 MPa, densities from 9.5 to 1065 kg·m–3, and compositions from 0.39 to 0.89 mol fraction of HFC-32, with uncertainties of 8 mK, 1.7 kPa, 0.04%, and 0.001 mol fraction, respectively. A constant-volume method was used for the present measurements either with a spherical vessel approximately 270 cm3 in its inner volume or with a cylindrical vessel approximately 138cm3 in its inner volume. The present data were compared with the Piao equation of state for this substance.  相似文献   

17.
Thermophysical Properties of Chlorine from Speed-of-Sound Measurements   总被引:1,自引:0,他引:1  
The speed of sound was measured in gaseous chlorine using a highly precise acoustic resonance technique. The data span the temperature range 260 to 440 K and the pressure range 100 kPa to the lesser of 1500 kPa or 80% of the sample's vapor pressure. A small correction (0.003 to 0.06%) to the observed resonance frequencies was required to account for dispersion caused by the vibrational relaxation of chlorine. The speed-of-sound measurements have a relative standard uncertainty of 0.01%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. The reported values of C o p are in agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound speed data to within 0.01% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less.  相似文献   

18.
Thermodynamic Properties of HFC-227ea   总被引:3,自引:0,他引:3  
The density and speed of sound in gaseous and liquid 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) have been studied by a -attenuation technique, an ultrasonic interferometer, and an isochoric piezometer method over the temperature range of 273 to 383K at pressures up to 3.5MPa. The purity of the samples used throughout the measurements are 99.99mol%. The pressures of the saturated vapor were measured over the same temperature range. The experimental uncertainties of the temperature, pressure, density, and speed of sound measurements were estimated to be within ±20mK, ±1.5kPa, ±0.2%, and ±(0.15–0.2)%, respectively. On the basis of the obtained data, the isobaric molar heat capacity of HFC-227ea was calculated for the ideal-gas state.  相似文献   

19.
A cylindrical resonator was employed to measure the sound speeds in gaseous CF4 and C2F6. The CF4 measurements span the temperature range 300 to 475 K, while the C2F6 measurements range from 210 to 475 K. For both gases, the pressure range was 0.1 MPa to the lesser of 1.5 MPa or 80% of the sample’s vapor pressure. Typically, the speeds of sound have a relative uncertainty of less than 0.01 % and the ideal-gas heat capacities derived from them have a relative uncertainty of less than 0.1%. The heat capacities agree with those determined from spectroscopic data. The sound speeds were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two models for the virial coefficients were employed, one based on square-well potentials and the second based on a Kihara spherical-core potential. The resulting virial equations reproduce the sound-speed measurements to within 0.005 % and yield densities with relative uncertainties of 0.1% or less. The viscosity calculated from the Kihara potential is 2 to 11% less than the measured viscosity.  相似文献   

20.
The isobaric ideal-gas heat capacity for HFO-1234yf, which is expected to be one of the best alternative refrigerants for HFC-134a, was determined on the basis of speed-of-sound measurements in the gaseous phase. The speed of sound was measured by means of the acoustic resonance method using a spherical cavity. The resonance frequency in the spherical cavity containing the sample gas was measured to determine the speed of sound. After correcting for some effects such as the thermal boundary layer and deformation of the cavity on the resonance frequency, the speed of sound was obtained with a relative uncertainty of 0.01 %. Using the measured speed-of-sound data, the acoustic-virial equation was formulated and the isobaric ideal-gas heat capacity was determined with a relative uncertainty of 0.1 %. A temperature correlation function of the isobaric ideal-gas heat capacity for HFO-1234yf was also developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号