首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stable GS115 Pichia pastoris recombinant strain was constructed to secrete a truncated form of the human alpha(1,3/4) fucosyltransferase (amino acids 45-361). Enzyme production resulted from a secretory pathway based on the pre-pro- alpha mating factor signal sequence of the yeast Saccharomyces cerevisiae . Following its transit through the Golgi apparatus, the enzyme accumulated in the periplasmic space before its release in the culture broth (about 30 mg/l). Cell-enclosed enzyme ( approximately 0.16%) proved to be fairly stable for many freezing and thawing cycles and could be used several times as an immobilized catalyst. Soluble enzyme (>99.8%) representing the main protein of the culture broth (10%) has been characterized by Western-blotting, substrate specificities and kinetic parameters. The two forms (cell-enclosed and soluble) of recombinant enzyme may be used for in vitro synthesis of Lewisadeterminants.  相似文献   

2.
The substrate specificity and kinetic properties of a pure sialyltransferase from bovine colostrum have been examined. The transferase appears to incorporate sialic acid into the sequence, NeuAcalpha2 leads to 6Galbeta1 leads to 4GlcNAc, which is commonly found in glycoproteins. It has a strict substrate specificity for CMP-NeuAc and forms only the alpha2 leads to 6 sialyl linkage with beta-D-galactosides. N-Acetyllactosamine (Galbeta1 leads to 4GlcNAc) and asialo-glycoproteins containing the N-acetyllactosaminyl linkage at the nonreducing ends of the oligosaccharides prosthetic groups are the best acceptor substrates. Isomers of N-acetyllactosamine with beta1 leads to 3 or beta1 leads to 6 glycosidic linkages are less than 1% as effective as acceptor substates as the beta1 leads to 4-linked isomer. Lactose (Galbeta1 leads to 4Glc) is also a poor acceptor, indicating the importance of the 2-acetamido group in the N-acetylglucosaminyl residues. The unnatural substrate beta-methyl-L-arabinopyrano-side, a five-carbon analog of beta-methyl-D-galactoside which contains no 6-hydroxyl, also acts as a poor acceptor of the transferase and the sialylated product has been partially characterized. Kinetic properties of the enzyme in the presence and absence of inhibitors suggest that the transferase has an equilibrium random order mechanism.  相似文献   

3.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

4.
Human alpha-galactosidase A (alpha-Gal A) is the lysosomal glycohydrolase that cleaves the terminal alpha-galactosyl moieties of various glycoconjugates. Overexpression of the enzyme in Chinese hamster ovary (CHO) cells results in high intracellular enzyme accumulation and the selective secretion of active enzyme. Structural analysis of the N -linked oligosaccharides of the intracellular and secreted glycoforms revealed that the secreted enzyme's oligosaccharides were remarkably heterogeneous, having high mannose (63%), complex (30%), and hybrid (5%) structures. The major high mannose oligosaccharides were Man5-7GlcNAc2 species. Approximately 40% of the high mannose and 30% of the hybrid oligosaccharides had phosphate monoester groups. The complex oligosaccharides were mono-, bi-, 2,4-tri-, 2,6-tri- and tetraantennary with or without core-region fucose, many of which had incomplete outer chains. Approximately 30% of the complex oligosaccharides were mono- or disialylated. Sialic acids were mostly N -acetylneuraminic acid and occurred exclusively in alpha2, 3-linkage. In contrast, the intracellular enzyme had only small amounts of complex chains (7.7%) and had predominantly high mannose oligosaccharides (92%), mostly Man5GlcNAc2 and smaller species, of which only 3% were phosphorylated. The complex oligosaccharides were fucosylated and had the same antennary structures as the secreted enzyme. Although most had mature outer chains, none were sialylated. Thus, the overexpression of human alpha-Gal A in CHO cells resulted in different oligosaccharide structures on the secreted and intracellular glycoforms, the highly heterogeneous secreted forms presumably due to the high level expression and impaired glycosylation in the trans- Golgi network, and the predominately Man5-7GlcNAc2 cellular glycoforms resulting from carbohydrate trimming in the lysosome.  相似文献   

5.
We isolated a cDNA clone encoding mouse N-acetylglucosamine-6-O-sulfotransferase based on sequence homology to the previously cloned mouse chondroitin 6-sulfotransferase. The cDNA clone contained an open reading frame that predicts a type II transmembrane protein composed of 483 amino acid residues. The expressed enzyme transferred sulfate to the 6 position of nonreducing GlcNAc in GlcNAcbeta1-3Galbeta1-4GlcNAc. Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc and various glycosaminoglycans did not serve as acceptors. Expression of the cDNA in COS-7 cells resulted in production of a cell-surface antigen, the epitope of which was NeuAcalpha2-3Galbeta1-4(SO4-6)GlcNAc; double transfection with fucosyltransferase IV yielded Galbeta1-4(Fucalpha1-3)(SO4-6)GlcNAc antigen. The sulfotransferase mRNA was strongly expressed in the cerebrum, cerebellum, eye, pancreas, and lung of adult mice. In situ hybridization revealed that the mRNA was localized in high endothelial venules of mesenteric lymph nodes. The sulfotransferase was concluded to be involved in biosynthesis of glycoconjugates bearing the 6-sulfo N-acetyllactosamine structure such as 6-sulfo sialyl Lewis X. The products of the sulfotransferase probably include glycoconjugates with intercellular recognition signals; one candidate of such a glycoconjugate is an L-selectin ligand.  相似文献   

6.
Beta-N-Acetylgalactosaminidase [EC 3.2.1.53] was purified to homogeneity from the culture media of Bacillus sp. AT173-1. The enzyme has a molecular weight of 48,000 as estimated by SDS-PAGE under reducing conditions and an isoelectric point of 4.3. The enzyme requires dithiothreitol as an activator and is most active at pH 6.0. Analysis of its substrate specificity using 2-aminopyridine-labeled oligosaccharides as substrates revealed the enzyme specifically hydrolyzes beta-N-acetylgalactosaminyl linkages of GalNAcbeta1-4Galbeta1-4Glc, GalNAcbeta1-3Gal alpha1-4Galbeta1-4Glc, and N-glycans terminating with beta-N-acetylgalactosamine residues but not those with beta-N-acetylglucosamine residues. The enzyme is thus a novel beta-N-acetylgalactosaminidase with practically no beta-N-acetylglucosaminidase activity.  相似文献   

7.
In the present experiments the cDNA coding for a truncated form of the beta1,6N-acetylglucosaminyltransferase responsible for the conversion of linear to branched polylactosamines in human PA1 cells was expressed in Sf9 insect cells. The catalytic ectodomain of the enzyme was fused to glutathione S-transferase, allowing effective one-step purification of the glycosylated 67-74-kDa fusion protein. Typically a yield of 750 microg of the purified protein/liter of suspension culture was obtained. The purified recombinant protein catalyzed the transfer of GlcNAc from UDP-GlcNAc to the linear tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc, converting the acceptor to the branched pentasaccharide Galbeta1-4GlcNAcbeta1-3(GlcNAcbeta1-6)Galbeta1-4 GlcNAc as shown by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, degradative experiments, and 1H NMR spectroscopy of the product. By contrast, the recombinant enzyme did not catalyze any reaction when incubated with UDP-GlcNAc and the trisaccharide GlcNAcbeta1-3Galbeta1-4GlcNAc. Accordingly, we call the recombinant beta1,6-GlcNAc transferase cIGnT6 to emphasize its action at central rather than peridistal galactose residues of linear polylactosamines in the biosynthesis of blood group I antigens. Taken together this in vitro expression of I-branching enzyme, in combination with the previously cloned enzymes, beta1,4galactosyltransferase and beta1, 3N-acetylglucosaminyltransferase, should allow the general synthesis of polylactosamines based totally on the use of recombinant enzymes.  相似文献   

8.
It has been assumed that membrane-bound glycosyltransferases function within the Golgi apparatus to glycosylate glycoproteins. We now report, however, that a truncated, soluble recombinant form of the murine alpha1,3-galactosyltransferase expressed in human 293 cells is highly efficient and comparable to the full-length enzyme in alpha-galactosylating both newly synthesized membrane-associated and secreted glycoproteins. Although the soluble enzyme was secreted by cells as expected, we also found that the full-length, membrane-associated form was secreted. Unexpectedly, both secreted forms are cleaved identically at two primary sites within the stem region by endogenous protease(s) at the indicated positions in the sequence 73KDWW (downward arrow) FPS (downward arrow) WFKNG. These results demonstrate that the soluble alpha1,3-galactosyltransferase is functional within the cell and that specific proteolysis occurs in the stem region. The widespread occurrence of different soluble glycosyltransferases secreted by cells suggests that normal glycoconjugate biosynthesis may involve cooperation between membrane-bound and soluble enzymes.  相似文献   

9.
10.
Five oligosaccharide alpha1-phosphates and one sulfated glycopeptide have been isolated from the hemofiltrate of one patient with end-stage renal disease. Isolation of these compounds has been achieved using reverse osmosis, ion-exchange and size-exclusion chromatography and high performance liquid chromatography. The structures were predominantly elucidated by one- and two-dimensional 1H and 31P NMR spectroscopy. The chemical structures were determined to be: 1 NeuAc alpha2-3Gal alpha1-OPO3H2; 2 NeuAc alpha2-6Galbeta1-4GlcNAc alpha1-OPO3H2; 3 NeuAc alpha2-3Galbeta1-3GalNAc alpha1-OPO3H2; 4 NeuAc alpha2-3Galbeta1-3[NeuAc alpha2-6]GalNAc alpha1-OPO3H2 (proposed structure); 5 Fuc alpha1-2Galbeta1-4[Fuc alpha1-3]GlcNAc alpha1-OPO3H2; 6 HOSO3-4Fuc alpha1-6GlcNAcbeta1-NAsn. While 2 and 3 have been previously characterized as compounds of urine and hemofiltrate, the oligosaccharide alpha1-phosphates 1, 4, and 5 could be isolated--to our knowledge--for the first time from biological material. Compound 6 is the first glycopeptide reported to contain a 4-sulfated fucose residue.  相似文献   

11.
A novel fucosyltransferase (cFTase) activity has been enriched over 10(6)-fold from the cytosolic compartment of Dictyostelium based on transfer of [3H]fucose from GDP-[3H]fucose to Galbeta1,3 GlcNAc beta-paranitrophenyl (paranitrophenyl-lacto-N-bioside or pNP-LNB). The activity behaved as a single component during purification over DEAE-, phenyl-, Reactive Blue-4-, GDP-adipate-, GDP-hexanolamine-, and Superdex gel filtration resins. The purified activity possessed an apparent Mr of 95 X 10(3), was Mg2+-dependent with a neutral pH optimum, and exhibited a Km for GDP-fucose of 0.34 microM, a Km for pNP-LNB of 0.6 mM, and a Vmax for pN-P-LNB of 620 nmol/min/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the Superdex elution profile identified a polypeptide with an apparent Mr of 85 X 10(3), which coeluted with the cFTase activity and could be specifically photolabeled with the donor substrate inhibitor GDP-hexanolaminyl-azido-125I-salicylate. Based on substrate analogue studies, exoglycosidase digestions, and co-chromatography with fucosylated standards, the product of the reaction with pNP-LNB was Fucalpha1, 2Galbeta1,3GIcNAcbeta-pNP. The cFTase preferred substrates with a Galbeta1,3linkage, and thus its acceptor substrate specificity resembles the human Secretor-type alpha1,2- FTase. Afucosyl isoforms of the FP21 glycoprotein, GP21-I and GP21-II, were purified from the cytosol of a Dictyostelium mutant and found to be substrates for the cFTase, which exhibited an apparent K(m) of 0.21 microM and an apparent V(max) of 460 nmol/min/mg protein toward GP21-II. The highly purified cFTase was inhibited by the reaction products Fucalpha1,2Galbeta1,3GlcNAcbeta-pNP and FP21-II. FP21-I and recombinant FP21 were not inhibitory, suggesting that acceptor substrate specificity is based primarily on carbohydrate recognition. A cytosolic location for this step of FP21 glycosylation is implied by the isolation of the cFTase from the cytosolic fraction, its high affinity for its substrates, and its failure to be detected in crude membrane preparations.  相似文献   

12.
This paper extends our earlier work on the analysis of neutral N-glycans from adult rat brain to glycans carrying NeuAc residues as their sole charged groups. These structures comprised at least 40% of the total (acidic and neutral) N-glycan pool. Compounds were identified by a combination of endoglycosidase and exoglycosidase digestions, anion-exchange chromatography, normal and reverse-phase high-performance liquid chromatography, matrix-assisted laser desorption/ionisation-mass spectrometry and combined gas chromatography/mass spectrometry. Mono-, di- and trisialylated components, together with components substituted with four (or more) NeuAc residues, showed abundances of approximately 12, 10, 7 and 7%, respectively, relative to the total N-glycan pool. In addition, neuraminidase digestion resulted in the neutralisation of a fraction of highly charged species, possibly indicating the presence of N-glycans substituted with short chains of polysialic acid. Sialylated bi-, tri- [mainly the (2,4)-branched isomer], tetraantennary complex, polylactosamine and hybrid structures were detected. Typically, for 'brain-type' N-glycosylation, these sialylated structures were variously modified by the presence of core alpha1-6-linked and outer-arm alpha1-3-linked fucose residues and by a bisecting GlcNAc. Structural groups such as sialyl Lewis(x) and NeuAc alpha2-3 substituted Galbeta1-4GlcNAc antennae were common. In contrast to the neutral glycans, however, a widespread distribution of terminal beta1-3-linked galactose residues was observed. The presence of beta1-3-linked galactose allowed for a high degree of sialylation as afforded by the presence of the NeuAc alpha2-3Galbeta1-3(NeuAc alpha2-6)GlcNAc structural group. This revealed a number of novel structures including the presence of tetraantennary N-glycans with more than one beta1-3galactose residue and (2,4)-branched triantennary oligosaccharides containing three such residues. Disialylated hybrid glycans containing beta1-3-linked galactose and 'polylactosamine' N-glycans with one to three terminal beta1-3galactose residues were additional novel features. The N-glycans modified by polysialylation lacked outer-arm fucose and bisecting GlcNAc residues but all contained one or more terminal beta1-3-linked galactose residues. These may be representative, therefore, of the polysialylated N-glycans expressed mainly on neural cell-adhesion molecules and known to be present in adult rat brain. The diversity of presentation of terminal sialylated groups in rat brain implies potential specificity for possible charge or lectin-mediated interactions. The distinguishing sets of sialylated structures described here are indicative of differences in the natural glycosylation processing pathways in different cell types within the central nervous system, a specificity that may be further magnified on the individual glycoproteins.  相似文献   

13.
GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1-->6fucosyltransferase (alpha1-6FucT; EC 2.4.1.68), which catalyzes the transfer of fucose from GDP-Fuc to N-linked type complex glycopeptides, was purified from a Triton X-100 extract of porcine brain microsomes. The purification procedures included sequential affinity chromatographies on GlcNAcbeta1-2Manalpha1-6(GlcNAcbeta1-2Manalpha1- 2)Manbeta1-4GlcNAcbet a1-4GlcNAc-Asn-Sepharose 4B and synthetic GDP-hexanolamine-Sepharose 4B columns. The enzyme was recovered in a 12% final yield with a 440, 000-fold increase in specific activity. SDS-polyacrylamide gel electrophoresis of the purified enzyme gave a major band corresponding to an apparent molecular mass of 58 kDa. The alpha1-6FucT has 575 amino acids and no putative N-glycosylation sites. The cDNA was cloned in to pSVK3 and was then transiently transfected into COS-1 cells. alpha1-6FucT activity was found to be high in the transfected cells, as compared with non- or mock-transfected cells. Northern blotting analyses of rat adult tissues showed that alpha1-6FucT was highly expressed in brain. No sequence homology was found with other previously cloned fucosyltransferases, but the enzyme appears to be a type II transmembrane protein like the other glycosyltransferases.  相似文献   

14.
15.
A microsomal GlcNAc-6-O-sulfotransferase activity from human bronchial mucosa, able to transfer a sulfate group from adenosine 3'-phosphate 5'-phosphosulfate onto methyl-N-acetylglucosaminides or terminal N-acetylglucosamine residues of carbohydrate chains from human respiratory mucins, has been characterized. The reaction products containing a terminal HO3S-6GlcNAc were identified by high performance anion-exchange chromatography. Using methyl-beta-N-acetylglucosaminide as a substrate, the optimal activity was obtained with 0.1% Triton X-100, 30 mM NaF, 20 mM Mn2+, 5 mM AMP in a 30 mM MOPS (3-(N-morpholino) propanesulfonic acid) buffer at pH 6.7. The apparent Km values for adenosine 3'-phosphate 5'-phosphosulfate and methyl-beta-N-acetylglucosaminide were observed at 9.1 x 10(-6) M and 0.54 x 10(-3) M, respectively. The enzyme had more affinity for carbohydrate chains with a terminal GlcNAc residue than for methyl-beta-N-acetylglucosaminide; it was unable to catalyze the transfer of sulfate to position 6 of the GlcNAc residue contained in a terminal Galbeta1-4GlcNAc sequence. However, oligosaccharides with a nonreducing terminal HO3S-6GlcNAc were substrates for a beta1-4 galactosyltransferase from human bronchial mucosa. These data point out that GlcNAc-6-O-sulfotransferase must act before beta1-4 galactosylation in mucin-type oligosaccharide biosynthesis.  相似文献   

16.
The periplasmic invertase was purified from Saccharomyces cerevisiae och1::LEU2 disruptant cells (delta och1), which have a defect in elongation of the outer chain attached to the N-linked core oligosaccharides (Nakayama, K., Nagasu, T., Shimma, Y., Kuromatsu, J., and Jigami, Y. (1992) EMBO J. 11, 2511-2519). Structural analysis of the pyridylaminated (PA) neutral oligosaccharides released by hydrazinolysis and N-acetylation confirmed that the och1 mutation causes a complete loss of the alpha-1,6-polymannose outer chain, although the PA oligosaccharides (Man9GlcNAc2-PA and Man10GlcNAc2-PA), in which one or two alpha-1,3-linked mannose(s) attached to the endoplasmic reticulumn (ER)-form core oligosaccharide (Man8GlcNAc2) were also detected. Analysis of the delta och1 mnn1 strain oligosaccharides released from total cell mannoprotein revealed that the delta och1 mnn1 mutant eliminates the alpha-1,3-mannose attached to the core and accumulates predominantly a single ER-form oligosaccharide species (Man8GlcNAc2), suggesting a potential use of this strain as a host cell to produce glycoproteins containing mammalian high mannose type oligosaccharides. The delta och1 mnn1 alg3 mutants accumulated Man5GlcNAc2 and Man8GlcNAc2 in total cell mannoprotein, confirming the lack of outer chain addition to the incomplete corelike oligosaccharide and the leaky phenotype of the alg3 mutation. All the results suggest that the OCH1 gene encodes an alpha-1,6-mannosyltransferase that is functional in the initiation of alpha-1,6-polymannose outer chain addition to the N-linked core oligosaccharide (Man5GlcNAc2 and Man8GlcNAc2) in yeast.  相似文献   

17.
During studies on the fucosylation of endogenous proteins in parental (Pro5) and N-acetyl-D-glucosamine (GlcNAc) transferase I-deficient (Lec1) Chinese hamster ovary (CHO) cells, we observed that Lec1 cells incorporate approximately 10-fold less [3H]fucose into macromolecules than Pro5 cells. Interestingly, most of the labelled oligosaccharides from both cell types could be released from the macromolecules by digestion with peptide N-glycosidase F (PNGase F). This was unexpected for Lec1 cells because they do not synthesize complex- or hybrid-type N-glycans. Structural analyses of the fucosylated oligosaccharides from Lec1 cells showed the fucose to be in an alpha 1,6 linkage to the core GlcNAc of relatively small oligomannose N-glycans (Man4GlcNAc2 and Man5GlcNAc2, where Man is D-mannose). Comparing the sizes of oligomannose N-glycans from Pro5 and Lec1 cells demonstrated a much higher proportion of the small (Man4GlcNAc2 and Man5GlcNAc2) oligomannose species in Lec1 cells. These results suggest that the core alpha 1,6 fucosyltransferase will fucosylate small (Man4-Man5GlcNAc2), but not large (Man8-Man9GlcNAc2) oligomannose N-glycans.  相似文献   

18.
beta-All-trans-retinoic acid (RA)-induced endodermal differentiation of mouse F9 teratocarcinoma cells is accompanied by changes in glycoprotein glycosylation, including expression of i antigen (i.e. polylactosamine) and leukophytohemagglutinin-reactive oligosaccharides (i.e. -GlcNAc beta 1-6Man alpha 1-6-branched N-linked). We have used the F9 teratocarcinoma cells as a model to study developmental regulation of glycosyltransferase activities which are responsible for the biosynthesis of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides and polylactosamine. Growth of F9 cells in the presence of 10(-6) M RA for 4 days increased core 2 GlcNAc transferase and GlcNAc transferase V activities by 13- and 6-fold, respectively, whereas the activities of GlcNAc transferase I, beta 1-3GlcNAc transferase (i), beta 1-4Gal transferase, and beta 1-3Gal transferase increased 2-4-fold. Induction of glycosyltransferase activities by RA was dose-dependent and showed a biphasic response with approximately half of the increase observed 3 days after RA treatment and the remainder occurred by day 4. PYS-2, a parietal endoderm cell line, showed levels of glycosyltransferase activities similar to those of RA-treated F9 cells. Glycosyltransferase activities in the RA-resistant F9 cell line (RA-3-10) were low and showed only a small induction by RA. These observations suggest that differentiation of F9 cells is closely associated with induction of multiple glycosyltransferase activities, with most pronounced increases in GlcNAc transferase V and 2',5'-tetradenylate (core 2) GlcNAc transferase. The increase in GlcNAc transferase V was also reflected by the 4-6-fold increase in the binding of 125I-leukophytohemagglutinin to several cellular glycoproteins, which occurred after 3 days of RA treatment. The endo-beta-galactosidase-sensitive polylactosamine content of membrane glycoproteins and, in particular, the LAMP-1 glycoprotein was markedly increased after RA treatment of F9 cells. Consistent with these observations, fucosylated polylactosamine (i.e. dimeric Lex) was also increased in RA-treated cells. Analysis of the aryl oligosaccharides produced by F9 cells cultured in the presence of aryl alpha-D-GalNAc showed that RA treatment enhanced the synthesis of disialyl core 2 O-linked oligosaccharides and increased the polylactosamine content of the aryl oligosaccharides by > 20-fold. The results suggest that differentiation of F9 cells into endoderm is closely associated with increased GlcNAc transferase V and core 2 GlcNAc transferase activities, enzymes which control the level of beta 1-6GlcNAc-branched N- and O-linked oligosaccharides, the preferred substrates for polylactosamine addition.  相似文献   

19.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser and GlcAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O -Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with alpha-N-acetylgalactosaminidase and beta-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was alpha-linked, as in the product previously synthesized using serum enzymes, and not beta-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAbeta1-4GlcNAcalpha1-4]2-GlcAbeta1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides.  相似文献   

20.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2-cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号