首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a novel constraint adaptive backstepping based tracking controller for nonlinear active suspension system with parameter uncertainties and safety constraints. By introducing the virtual control input and reference trajectories, the adaptive control law is developed to stabilize both of the vertical and pitch motions of vehicle body using backstepping technique and Lyapunov stability theory, and further to track the predefined reference trajectories within a finite time, which not only ensure the safety performance requirements, but also achieve improvements in riding comfort and handling stability of vehicle active suspension system. Next, the stability analysis on zero dynamics error system is conducted to ensure that all the safety performance indicators are all bounded and the corresponding upper bounds are estimable. Finally, a numerical simulation is provided to verify the effectiveness of the proposed controller and to address the comparability between the classical Barrier–Lyapunov Function based adaptive tracking controller and the proposed controller.  相似文献   

2.
In this paper, a new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control (AISMC) and a disturbance observer (DO). First, an integral sliding mode control (ISMC), in which the backstepping control technique is used as the nominal controller, is designed for the system. The major features, i.e., benefits and drawbacks, of the ISMC are discussed thoroughly. Then, to enhance the tracking performance of the system, an adaptive technique and a new disturbance observer based on sliding mode technique are developed and integrated into the ISMC. The stability of the closed-loop system is proved based on Lyapunov criteria. Computer simulation is performed to illustrate the tracking performance of the proposed controller and compare with the existing controllers for the tracking control of a surface vessel. The simulation results demonstrate the superior performance of the proposed strategy.  相似文献   

3.
This article presents a supervisory hybrid control design for piezoelectric actuators utilized in tracking trajectories with intermittent jump discontinuities. We use a previously developed robust adaptive controller and a standard PID controller to construct this hybrid control strategy. We show that when the sub-controllers are used for step tracking, while primarily tuned for continuous trajectory tracking, large undesirable oscillations occur. Conversely, when the controllers are retuned for step tracking, their performance degrades in tracking high-frequency continuous trajectories. Thus, a supervisory hybrid controller is developed to track desired trajectories with occasional discontinuities, using both the robust adaptive and the PID controllers. The robust adaptive controller performs as the primary controller for tracking the continuous segments of the desired trajectory, while the PID controller is activated when the steps occur. Results indicate that the proposed supervisory hybrid controller outperforms both sub-controllers in tracking high-frequency trajectories with intermittent discontinuities.  相似文献   

4.
This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme.  相似文献   

5.
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller  相似文献   

6.
针对电液伺服系统普遍存在的参数不确定性、不确定非线性(磁滞、摩擦、外干扰等),提出一种基于自适应鲁棒控制的含磁滞补偿的预设性能跟踪控制策略。以阀控单出杆液压缸位置伺服系统为例,首先建立了含磁滞非线性的系统数学模型,然后通过定义预设性能函数,实现了对跟踪误差收敛速率、最大超调量和稳态精度的预先规划,基于规划后的转换误差设计了自适应鲁棒控制器,并提高了稳态和瞬态跟踪性能。仿真对比结果表明:该控制策略可以减小磁滞对系统跟踪精度的影响,提高跟踪误差的收敛速度,减小最大超调量,最终实现优良的跟踪性能。  相似文献   

7.
电液伺服力控系统的自适应滑模控制   总被引:9,自引:0,他引:9  
针对存在不确定性的非线性电液伺服力控系统的跟踪控制问题,基于等价控制的概念,提出了一种自适应滑模控制律综合方法,应用参数自适应的方法,消除不确定性对控制性能的影响,以达到鲁棒跟踪控制的目的。为了证明这种控制器可行性,利用微机实现的该控制器被应用于某疲劳试验机电液伺服系统,实时控制的结果验证了所提方法的有效性。  相似文献   

8.
结合反馈控制提出了一种自适应前馈控制方法来提高惯性稳定平台稳定控制的指令跟踪性能。应用子空间辨识算法,由输入输出数据辨识稳定平台动态模型的状态空间描述;采用频域回路成型方法设计反馈回路控制器,用于抑制外部扰动。应用递推最小二乘(RLS)自适应滤波器构建反馈控制回路逆模型,构造指令信号的全通特性,提高指令跟踪能力。针对不同的指令信号进行跟踪实验,验证了自适应前馈控制方法的有效性。实验结果表明:提出的自适应前馈方法对阶跃指令响应快,超调量可由反馈控制的30%降低至4.5%,对30 Hz正弦信号的响应幅值无衰减,相位滞后由反馈控制的90°降低至54°。得到的结果显著提高了系统的暂态性能,控制性能优于单独的反馈控制回路。  相似文献   

9.
丛成 《机械与电子》2022,(11):51-54
由于无法消除机械臂运动过程中存在的高频振动,导致运动控制方法存在跟踪精度低、控制稳定性差和控制性能差等问题。对此,提出一种基于自适应滑膜控制器的机械臂运动控制方法,在机械臂动力学模型的基础上设计非线性观测器,对机械臂控制系统中存在的干扰信号进行观测,设计自适应滑膜控制器对干扰信号进行补偿。将补偿器引入自适应滑膜控制器中,其主要作用是抑制机械臂在运动过程中存在的高频振动,以提高控制稳定性,通过 Lyapunov 函数设计自适应滑膜控制器的总控制律,根据总控制律利用改进后的自适应滑膜控制器完成机械臂的运动控制。实验结果表明,所提方法的跟踪精度高、稳定性好、控制性能高。  相似文献   

10.
针对电液位置伺服系统控制性能不佳的问题,提出一种基于改进PSO算法优化的模型参考自适应(Model Reference Adaptive Control,MRAC)跟踪控制方法。首先,建立电液位置伺服系统数学模型,设计出模型参考自适应控制器;其次,分析PSO算法、APSO算法在参数寻优过程中的不足,提出一种改进的PSO算法;最后,将改进的PSO算法用于模型参考自适应控制器以改善其控制性能。结果表明,改进PSO算法优化的模型参考自适应控制具有响应速度快、跟踪精度高的优点。  相似文献   

11.
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.  相似文献   

12.
This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement.  相似文献   

13.
In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results.  相似文献   

14.
A nonlinear adaptive control strategy is proposed for a binary batch distillation column. The hybrid control algorithm comprises a generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). The adaptive observation scheme mainly estimates the imprecisely known parameters based on the available tray temperature measurements. The sensitivity of the proposed estimator is investigated with respect to the effect of initialization error, unmeasured disturbance and uncertainty. Then, a comparative study is carried out between the derived nonlinear GMC-ASE controller and a traditional proportional integral law in terms of set point tracking and disturbance rejection performance. The study also includes the effect of measurement noise and parametric uncertainty on the closed-loop performance. The proposed adaptive control algorithm is shown to be quite promising due to the exponential error convergence capability of the ASE estimator in addition to the high-quality control action provided by the GMC controller.  相似文献   

15.
This paper presents a robust adaptive integral backstepping control strategy with friction compensation for realizing accurate and stable control of opto-electronic tracking system in the presence of nonlinear friction and external disturbance. With the help of integral control term to decrease the steady-state error of the system and combining robust adaptive control approach with the backstepping design method, a novel control method is constructed. Nonlinear modified LuGre observer is designed to estimate friction behavior. Robust adaptive integral backstepping control strategy is developed to compensate the changes in friction behavior and external disturbance of the servo system. The stability of the opto-electronic tracking system is proved by Lyapunov criterion. The performance of robust adaptive integral backstepping controller is verified by the opto-electronic tracking system with modified LuGre model in simulation and practical experiments. Compared to the adaptive integral backstepping sliding mode control method, the root mean square of angle error is reduced by 26.6% when the proposed control method is used. The experiment results demonstrate the effectiveness and robustness of the proposed strategy.  相似文献   

16.
A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law.  相似文献   

17.
叶锦华  李迪  叶峰 《中国机械工程》2014,25(8):1010-1016
提出了一种非完整移动机器人饱和自适应模糊轨迹跟踪控制方法,该方法基于反演技术分别设计了系统的运动学控制器和动力学控制器。运动学控制器通过引入分流控制技术解决了初始速度跳变引起的控制量突变问题,动力学控制器利用饱和函数和受限控制参数实现了其有界力矩控制。自适应模糊控制器将模糊逻辑系统与自适应方法相结合,有效消除了常规方法难以解决的系统未知不确定性对系统的影响。通过Lyapunov直接法证明了该系统是收敛且渐进稳定的。仿真结果验证了所设计控制器的良好控制性能和强鲁棒性。  相似文献   

18.
针对具有迟滞和蠕变特性的压电作动器非线性模型,提出了一种前馈控制和反馈控制相结合的自适应模糊逆控制方案。在前馈控制器中压电作动器的迟滞和蠕变非线性特性的逆模型由自适应模糊逻辑系统近似;在反馈控制器中比例控制器用来调节压电作动器的输出误差。该方法可以实时补偿压电作动器的迟滞和蠕变特性,减少作动器跟踪误差。仿真计算结果表明了该方法的有效性。  相似文献   

19.
Parametric uncertainty associated with unmodeled disturbance always exist in physical electrical–optical gyro-stabilized platform systems, and poses great challenges to the controller design. Moreover, the existence of actuator deadzone nonlinearity makes the situation more complicated. By constructing a smooth dead-zone inverse, the control law consisting of the robust integral of a neural network (NN) output plus sign of the tracking error feedback is proposed, in which adaptive law is synthesized to handle parametric uncertainty and RISE robust term to attenuate unmodeled disturbance. In order to reduce the measure noise, a desired compensation method is utilized in controller design, in which the model compensation term depends on the reference signal only. By mainly activating an auxiliary robust control component for pulling back the transient escaped from the neural active region, a multi-switching robust neuro adaptive controller in the neural approximation domain, which can achieve globally uniformly ultimately bounded (GUUB) tracking stability of servo systems recently. An asymptotic tracking performance in the presence of unknown dead-zone, parametric uncertainties and various disturbances, which is vital for high accuracy tracking, is achieved by the proposed robust adaptive backstepping controller. Extensively comparative experimental results are obtained to verify the effectiveness of the proposed control strategy.  相似文献   

20.
基于模糊干扰观测器的电动Stewart平台自适应模糊控制   总被引:2,自引:1,他引:1  
建立了一个电动Stewart平台的统一动力学模型,并基于它设计了一种新型的自适应模糊控制算法。这个统一的动力学模型在任务空间中使用了Newton-Euler方法建立,同时结合了平台动力学和执行器动力学模型。自适应模糊控制算法使用计算力矩方法设计运动平台标称模型的逆动力学控制器,然后使用基于模糊干扰观测器的自适应模糊控制器对模型的不确定性和外部扰动进行补偿。通过数值仿真分析表明,在不引入高增益控制器的情况下,成功地消除了平台参数的不确定性和外部干扰的影响,保证了平台的跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号