首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
二元气-固流化系统临界流化速度的研究   总被引:1,自引:0,他引:1  
在直径为4cm的有机玻璃流化床中,对由不同尺寸和质量分数的铁矿石和煤颗粒组成的二元气-固流态化系统进行了流化特征的实验研究,得到了该系统的流化特性曲线,给出了临界流化速度和二元系统混合颗粒平均直径之间的关系,用该关系式对临界流化速度进行了预测,并且将预测值和实验值进行了比较。结果表明,当煤颗粒的质量分数为10%时,临界流化速度umf与颗粒直径的平方dm2的关系为umf=0.13dm2+1.2;当煤颗粒的质量分数为20%时,两者的关系变为umf=0.12dm2+1.2,预测值与实验值误差在10%以内。  相似文献   

2.
资源高效利用是现代产业发展的重要方向,通过对各类污染物进行高效利用有助于提高资源的回收利用率,提高经济效益。含油污泥作为固体废弃物中的一种,其具有较高的污染性和危害性,如若未能采取有效的措施加以利用不仅容易污染环境同时也是对石油资源的浪费。含油污泥属于固体废弃物中的一种,其广泛分布于石油资源开采、运输、加工的各个环节中,含油污泥中的含油率能够达到10%~30%,应当积极做好含油污泥处理设备的研究与开发并通过合理的含油污泥提取工艺实现对于含油污泥的回收利用。  相似文献   

3.
在石油开采及生产加工中要产生大量含油污泥,这些污泥不经处理直接排入环境将严重危害环境安全。因此,国内外正积极采取各种应对措施,希望能缓解含油污泥带来的危害。本次试验主要研究目的:高频电磁场降低污泥中固体含油率。经过高频电磁场作用后,污泥中固体含油量明显降低。  相似文献   

4.
多材质混合铸型能提高砂型铸造性能,改善其热物性参数,降低铸造成本,满足高端复杂铸件的高性能铸造需求,因此系统地开展多材质砂型铸造性能和铸件微观组织变化规律的研究具有重要意义。通过将石英砂颗粒分别与铬铁矿砂颗粒、锆英砂颗粒进行不同比例的混合造型,得到各比例下多材质砂型的性能变化规律,优选出适用于复杂铸件铸造性能和热物性能兼备的型砂配方,实现砂型铸造性能可控、热物性可控、价格可控优势。同时研究混合砂型对A356铝合金铸件二次枝晶臂间距(SDAS)的影响规律,结果表明:经过50%石英砂+50%锆英砂混合的多材质砂型的SDAS比纯石英砂砂型铸件缩短了23.64%,经过50%石英砂+50%铬铁矿砂混合的多材质砂型的SDAS比纯石英砂砂型铸件缩短了13.16%。因此,混合一定比例的锆英砂和铬铁矿砂颗粒可有效改善砂型的铸造性能和铸件的微观组织,可实现高端复杂铸件的高质量制造。  相似文献   

5.
为了解决柱锥旋流器一次分级只能得到2种产品,且粒级范围较宽,难以满足后续分选设备的入料粒级要求的问题,提出一种新型的多产品旋流器,一次分级可以得到4种窄粒径范围产品;通过性能试验研究其结构参数对分离性能的影响规律。结果表明:入料中粒径为10μm以下的颗粒质量分数为6.22%时,一次分级得到4种细粒级颗粒的质量分数分别为62.83%、2%、46.54%、35.25%;随底流口直径增大,一段底流质量分数减小12.48%,产率增大2.68%,粒径变小,内溢流产率减小1.48%;内溢流管的插入深度直接影响旋流器的分离性能,当内外溢流管插入深度相同时,内溢流质量百分数达0.4%,产率最大达1.89%。  相似文献   

6.
含油污泥热解残渣特性及其资源化利用研究概述   总被引:2,自引:0,他引:2  
基于减量化、无害化、资源化处理含油污泥的要求,在高温焦化法处理含油污泥基础上发展起来的热解技术因处理彻底、减量减容效果好、资源回收率高、回收方式灵活且能固化污泥中的重金属等优点受到人们的广泛关注,被认为是最有发展空间和应用前景的污泥处理技术。在含油污泥热解三相产物中,液相产物主要为水和较低凝点的原油,气相产物一般为甲烷、二氧化碳、一氧化碳、氢气等小分子气体,固相为残留在反应器内的固体剩余物,俗称残渣或残碳。目前,对含油污泥热解技术的研究主要集中于热解过程以及热解油及热解气的产率、性质分析与利用上,对热解残渣的研究较少。然而在含油污泥热解产物中残渣占有很大比例,且其含有未完全回收的油资源以及残留的重金属元素等,若得不到有效处理或利用,会造成二次污染。目前,含油污泥热解残渣已被列入《国家危险废物名录》。因此,热解残渣的处置及再利用已成为制约热解技术发展的瓶颈。含油污泥热解残渣的基础特征是其再利用和处置中需要考虑的关键因素,研究者们通过对不同含油污泥热解后残渣的元素组成、结构特征研究后认为残渣主要由灰分和碳组成。其中,灰分为污泥高温热解后形成的氧化物及硫酸盐、碳酸盐等,并含有少量的重金属,而碳在残渣中的质量分数可达35%~50%。高的含碳量使残渣形成了具有中大孔、微孔结构特征的疏松多孔结构,这为其资源化利用奠定了基础。另外,含油污泥的来源、特性,热解工艺参数的改变,是否进行活化及活化方式(包括含油污泥的活化及热解残渣的活化)等都会影响到残渣的元素种类、含量及结构特征,是后续选择处置或利用方式的依据。本文介绍了含油污泥热解后气、液、固三相产物,综述了含油污泥的特性、污泥的含水率、颗粒粒径、活化条件和热解终温、停留时间、升温速率等因素对热解残渣产率、元素组成、表面化学性质、孔隙结构、表面形貌等的影响规律,分析了残渣在吸附剂、催化剂、絮凝剂及富氢燃气制备等领域中的应用。  相似文献   

7.
Al2O3颗粒/耐热钢复合材料的制备及高温磨料磨损性能   总被引:10,自引:1,他引:10       下载免费PDF全文
氧化铝与耐热钢在高温下都具有优异的特殊性能,氧化铝硬度高、热稳定性好、耐热钢的抗氧化性与热强性高,因此氧化铝颗粒增强耐热钢基复合材料可望获得好的抗高温磨料磨损性能。在154~200 μm的氧化铝颗粒表面通过化学气相沉积技术获得Ni涂层后,通过在氧化铝颗粒中加入耐热钢颗粒的方法与负压铸渗技术,获得了氧化铝颗粒体积分数在18 %~52 %的氧化铝颗粒/耐热钢基复合材料,并考察了其在900℃的磨料磨损工况下的耐磨性。结果表明:所有复合材料的耐磨性均比耐热钢的好,耐磨性最好的复合材料是氧化铝颗粒体积分数为39 %的复合材料,其耐磨性是耐热钢的3.27倍。通过扫描电镜分析了复合材料的磨损机理及不同氧化铝颗粒体积分数复合材料的磨损行为。   相似文献   

8.
杨绍斌  张旭  谢帅 《材料保护》2018,(4):47-50,140
现有的Al_2O_3颗粒增强铝基复合材料中的Al_2O_3质量分数低于10%,对于加入10%以上Al_2O_3的增强铝基复合材料的研究报道较少。以粉末冶金法制备了Al_2O_3(~40%)增强铝基复合材料,采用现代表面分析技术和ML-10型摩擦磨损试验机研究了这一复合材料的显微硬度和耐磨性。结果表明:在Al_2O_3粒度为10μm,质量分数为40%时,复合材料的显微硬度达到55.3 HV;在Al_2O_3粒度为10μm,质量分数为30%时,相对磨损最小值,为0.728%,空隙率也达到最小;复合材料中的Al_2O_3粒度和质量分数与紧密堆积理论要求的粒度和质量分数配比一致。  相似文献   

9.
脉石英矿制备高纯石英砂工艺的试验研究   总被引:1,自引:0,他引:1  
为了使天然脉石英达到高纯石英砂的标准,通过煅烧—水淬—浮选—酸洗—乙醇-去离子水洗等工艺提纯石英砂,采用光学显微镜、扫描电镜、X射线衍射、激光粒度仪、电感耦合等离子体光谱仪等手段分析石英砂试样的显微结构、形貌、物相、粒度和成分。结果表明,脉石英矿粗砂粒径分布较均匀,浮选精砂及高温煅烧精砂的粒径明显增大,比表面积明显减小;浮选后精砂的大颗粒为纯石英;筛分、高温处理对石英砂杂质元素去除不明显,浮选、酸浸去除杂质效果显著,脉石英矿经处理后的石英砂中SiO2的质量分数达到99.99%以上。  相似文献   

10.
研究了硅砂原料对无碱铝硼硅酸盐玻璃(即TFT-LCD基板玻璃)熔化特性的影响。结果表明:玻璃熔制过程中"富硅氧层"的出现与石英砂颗粒粒径有关,当粒径小于75微米时,玻璃熔化质量良好;石英砂颗粒形态对于熔解特性也很重要,最佳的颗粒形态为圆形,并且粒径分布范围要相对集中,处于较窄区域。  相似文献   

11.
The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.  相似文献   

12.
Field-scale bioremediation of oily sludge in prepared beds was studied at Shengli oilfield in northern China. The influence of manure, coarse sand, sawdust, a specialized microbial preparation and greenhouse conditions on the efficiency of removal of oil and grease was evaluated. After bioremediation for 230 d, oil and grease content fell by 32–42 g kg−1 dry sludge in treated plots, indicating removal of 27–46% compared with only 15% in the control plot. Addition of manure, coarse sand, sawdust and greenhouse conditions significantly (p < 0.05) increased the amount removed. Moreover, the physico-chemical properties of the sludge in all treated plots improved significantly after bioremediation. Microbial biomass in sludge and community-level physiological profiling examined using BIOLOG microplates was also studied. Total petroleum hydrocarbon degraders and polycyclic aromatic hydrocarbon degraders increased in all treated oily sludge. The activity of sludge microbial communities increased markedly in the treated plots compared with the control. Canonical correspondence analysis showed that differences in substrate utilization patterns were highly correlated (p < 0.05) with sludge hydrolyzable N and oil and grease content. The biological toxicity of the oily sludge was lower following bioremediation in most of the treated plots as evaluated using Photobacterium phosphoreum T3.  相似文献   

13.
Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles.  相似文献   

14.
This paper investigated several options for environmentally acceptable management techniques of tank bottom oily sludge. In particular, we tested the applicability of managing the sludge by three options: (1) as a fuel supplement; (2) in solidification; (3) as a road material. Environmental testing included determination of heavy metals concentration; toxic organics concentration and radiological properties. The assessment of tank bottom sludge as a fuel supplement included various properties such as proximate analysis, ultimate analysis and energy content. Solidified sludge mixtures and road application sludge mixtures were subjected to leaching using the toxicity characteristic leaching procedure (TCLP). Tank bottom sludge was characterized as having higher concentrations of lead, zinc, and mercury, but lower concentrations of nickel, copper and chromium in comparison with values reported in the literature. Natural occurring radioactive minerals (NORM) activity values obtained on different sludge samples were very low or negligible compared to a NORM standard value of 100Bq/g. The fuel assessment results indicate that the heating values, the carbon content and the ash content of the sludge samples are comparable with bituminous coal, sewage sludge, meat and bone meal and petroleum coke/coal mixture, but lower than those in car tyres and petroleum coke. The nitrogen content is lower than those fuels mentioned above, while the sulfur content seems comparable with bituminous coal, petroleum coke and a petroleum coke/coal mixture. The apparent lack of leachability of metals from solidification and road material sludge applications suggests that toxic metals and organics introduced to these applications are not readily attacked by weak acid solutions and would not be expected to migrate or dissolved into the water. Thus, in-terms of trace metals and organics, the suggested sludge applications would not be considered hazardous as defined by the TCLP leaching procedure.  相似文献   

15.
陶瓷膜处理炼油厂"三泥"水相的研究   总被引:4,自引:0,他引:4  
采用陶瓷微滤膜对“三泥”水相进行处理.通过渗透液油含量的测定,证明此方法能明显地降低传统方法仰处理的水相的油,尤其是乳化油的含量.同时,确定了合适的膜孔径,研究了操作压力、膜面流速和操作温度对渗透通量的影响.为炼油厂“三泥”的处理提供了一种新的方法.  相似文献   

16.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes ×2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands.

rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

17.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes 2 2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands. rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

18.
19.
The mechanism of fine particles on the separation of waste printed circuit boards by vibrated fluidized bed is not clear. In this paper, the influence of particle composition on fluidization behavior and separation characteristics of waste printed circuit boards particles was studied. The separation results showed that the increase of fine particles significantly reduced the metal recovery. When the content of fine particles was 20 %, the concentrate yield decreased by 11.26 % and the metal recovery declined by 15.93 %. The analysis of fluidization characteristics proved that the stability of the bed was reduced at higher fine particle content. When the content of fine particles was 20 %, the standard deviation of bed pressure drop was 34.15 Pa higher than that without fine particles. And the microscopic and X-ray fluorescence analysis confirmed that the adhesion behavior of fine particles prevented them from being separated by density. In addition, it was found that the pre-removal of iron and aluminum could effectively improve the separation performance with a fine particle content of 20 %, and the metal recovery increased by 6.29 %. Based on this, our findings will provide important guidance for efficient recovery of valuable metals from waste printed circuit boards.  相似文献   

20.
The compression and failure responses of four rootzone sand mixtures (with different types of particle shapes) were analyzed, compared, and modeled at two different moisture states (air dried and 30 cm tension). Differences in particle packing characteristics arising from particle shape and moisture were quantified. The air-dried and moist samples of the sand mixtures had initial bulk density (IBD) values ranging from 1.55 to 1.67g/cc and 1.23 to 1.48g/cc, respectively. The low IBD values observed for moist mixtures were attributed to the particle-particle agglomeration effects that take place in the presence of moisture. In addition, it was observed that the sand mixture's porosity increased with decreasing particle sphericity. During compression testing, moist samples underwent a greater volumetric deformation compared to the air-dried samples for the same pressure levels, e.g., at 69kPa, the volumetric strain of moist round sand mixtures was 8% higher than that of the air-dried round sand mixtures. Therefore, moisture acted as lubricant during volumetric compression of sand mixtures. Also, the bulk modulus values decreased with increasing moisture content and decreasing particle sphericity. During shear testing, the moist samples underwent a larger amount of strain deformation compared to the air-dried samples for the same stress difference values. This suggests that the presence of moisture makes the sand mixtures ductile during shear testing, unlike the usual brittle response in air-dried state. Shear modulus values linearly increased with the increase in mean pressure for the air-dried samples, whereas, for moist samples, the shear modulus values increased gradually or remained practically constant. The effect of pressure, moisture, and particle shape was also quantified for two elastoplastic parameters (consolidation and swelling indices). It was generally observed that the average consolidation index values decreased with pressure but increased with moisture and particle angularity. On the other hand, average swelling index values increased with pressure, moisture, and particle angularity. Overall, it was concluded that the moisture and particle shape had a decisive influence on the compression and shear profiles of continuous rootzone sand mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号