首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Energy minimization calculations were used to generate secondary structures of partial and full-length myotonic dystrophy messenger RNAs (DMPK mRNAs) carrying variable numbers of CUG triplet repeats (n = 0 to 500). The results suggest that (1) unitary hairpins are the most stable structures formed; (2) long-axis distances of unfolded hairpins are directly proportional to CUG repeat numbers; and (3) hairpins composed of CUG repeats might form interstem clusters that are stabilized by hydrogen or ionic bonds. A model is proposed whereby DMPK mRNAs are sterically impeded from transport through nuclear pores, by giant hairpins or hairpin clusters formed by CUG repeats above a limit size (n > or = 44).  相似文献   

2.
Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG)n-repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca2+]i, the amplitude and shape of depolarization-induced Ca2+ transients, and the content of ATP-driven ion pumps in cultured skeletal muscle cells of wild-type and DMPK[-/-] knockout mice. In vitro-differentiated DMPK[-/-] myotubes exhibit a higher resting [Ca2+]i than do wild-type myotubes because of an altered open probability of voltage-dependent l-type Ca2+ and Na+ channels. The mutant myotubes exhibit smaller and slower Ca2+ responses upon triggering by acetylcholine or high external K+. In addition, we observed that these Ca2+ transients partially result from an influx of extracellular Ca2+ through the l-type Ca2+ channel. Neither the content nor the activity of Na+/K+ ATPase and sarcoplasmic reticulum Ca2+-ATPase are affected by DMPK absence. In conclusion, our data suggest that DMPK is involved in modulating the initial events of excitation-contraction coupling in skeletal muscle.  相似文献   

3.
Myotonic dystrophy (DM) is associated with an expansion of an unstable (CTG)n repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19q13.3. We studied six patients from two families who showed no expansions of the repeat, in spite of their clinical diagnosis of DM. These patients had multi-systemic manifestations that were distinguishable from those seen in other myotonic disorders, including proximal myotonic myopathy (PROMM). In one additional family, two symptomatic members showed no expanded (CTG)n repeats, while their affected relatives had the expanded repeats. DM haplotype analysis failed to exclude the DMPK locus as a possible site of mutation in each family; however, DMPK mRNA levels were normal. We conclude that a mutation(s) other than the expanded (CTG)n repeat can cause the DM phenotype. The mutation(s) in these families remain(s) to be mapped and characterized.  相似文献   

4.
The CTG repeat number in the 3'-untranslated region of the myotonin protein kinase (MTPK) gene varies between 5 and 37 in normal individuals, whereas myotonic dystrophy (DM) patients have expansions from 50 to 3000 copies. However little is known about the molecular mechanisms or the genetic control of the expansion of triplet repeats. To explain the dynamic mutation mechanism and high prevalence in the population, slippage theory, multistep model and meiotic drive hypothesis have been proposed. Recent studies have shown that repeat expansion may affect neighboring genes (59 gene and DMAHP gene), or exert its effect at the RNA level by modulating the binding of (CUG)n-RNA binding proteins which are required for the maturation, stability and translation of specific mRNAs.  相似文献   

5.
Myotonic dystrophy (DM) is caused by an expansion of a CTG repeat sequence in the 3' noncoding region of a protein kinase gene (DMPK) at 19q13.3. We used in situ hybridization to analyse the replication timing of the genomic region containing DMPK in fibroblasts and myoblasts from controls and myotonic dystrophy patients. In this method the relative proportion of singlet to doublet hybridization signals is used to infer the relative time of replication of specific loci or regions. Our results show that in cells from normal individuals approximately 65% of signals appear as doublets, indicating early replication. In DM patients with a number of CTG repeats ranging from about 600-1800 we observed a significant increase of singlet-doublets compared to the background level. These results suggest the existence of replication alternations and/or structural differences between the normal and mutant alleles induced by the presence of the DM mutation.  相似文献   

6.
7.
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disorder characterized by a great variability in its clinical manifestations. The mutational basis underlying DM consists of an unstable (CTG)n trinucleotide repeat in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK). Conflicting results on DMPK gene expression in congenitally affected infants (CDM) have been published. Moreover, the prominence of satellite cells seen in muscle of CDM infants supports the notion that the congenital form is associated with an arrest in muscle development and suggests a role for the DMPK gene during differentiation and maturation of muscle. In order to clarify these findings, a comparative study of DMPK and myogenic factor mRNA levels was performed in developing mouse muscle tissues and cultured muscle cells at different developmental stages. Results show that DMPK gene expression is upregulated at a late stage of muscular development. This upregulation does not seem to depend on a given muscle specific bHLH factor.  相似文献   

8.
Myotonic dystrophy (DM) is a highly variable multisystemic disease belonging to the rather special class of trinucleotide expansion disorders. DM results from dynamic expansion of a perfect (CTG)n repeat situated in a gene-dense region on chromosome 19q. Based on findings in patient materials or cellular and animal models, many mechanisms for the causes and consequences of repeat expansion have been proposed; however, none of them has enjoyed prolonged support. There is now circumstantial evidence that long (CTG)n repeats may affect the expression of any of at least three genes, myotonic dystrophy protein kinase (DMPK), DMR-N9 (gene 59), and a DM-associated homeodomain protein (DMAHP). Furthermore, the new findings suggest that DM is not a simple gene-dosage or gain-or-loss-of-function disorder but that entirely new pathological pathways at the DNA, RNA, or protein level may play a role in its manifestation.  相似文献   

9.
10.
11.
Myotonic dystrophy (MD) is an autosomal dominant systemic disorder with an unstable expansion of the CTG triplet repeat in the 3'-untranslated region of the gene encoding myotonine protein kinase (DMPK) which maps to chromosome 19q13.3. Somatic mosaicism of CTG repeats in MD has been reported; and it has been observed that CTG repeats in tumor tissues associated with MD are more expanded than the other tissues. It is not rare that parotid tumors are found in patients with MD. We performed Southern blot analysis for tissues from the parotid tumor, the normal parotid gland, the skeletal muscles, and the leukocyte from a 60-year-old patient with MD. CTG repeat was most expanded in the parotid tumor, and the normal parotid gland had longer expansion of CTG repeat than the skeletal muscles. The leukocyte had the shortest expansion of CTG repeat. The expansion of CTG repeat in the parotid tumor may be related to active cell division and may underlie the occurrence of tumors in MD.  相似文献   

12.
Muscle cells are frequently subjected to severe conditions caused by heat, oxidative, and mechanical stresses. The small heat shock proteins (sHSPs) such as alphaB-crystallin and HSP27, which are highly expressed in muscle cells, have been suggested to play roles in maintaining myofibrillar integrity against such stresses. Here, we identified a novel member of the sHSP family that associates specifically with myotonic dystrophy protein kinase (DMPK). This DMPK-binding protein, MKBP, shows a unique nature compared with other known sHSPs: (a) In muscle cytosol, MKBP exists as an oligomeric complex separate from the complex formed by alphaB-crystallin and HSP27. (b) The expression of MKBP is not induced by heat shock, although it shows the characteristic early response of redistribution to the insoluble fraction like other sHSPs. Immunohistochemical analysis of skeletal muscle cells shows that MKBP localizes to the cross sections of individual myofibrils at the Z-membrane as well as the neuromuscular junction, where DMPK has been suggested to be concentrated. In vitro, MKBP enhances the kinase activity of DMPK and protects it from heat-induced inactivation. These results suggest that MKBP constitutes a novel stress-responsive system independent of other known sHSPs in muscle cells and that DMPK may be involved in this system by being activated by MKBP. Importantly, since the amount of MKBP protein, but not that of other sHSP family member proteins, is selectively upregulated in skeletal muscle from DM patients, an interaction between DMPK and MKBP may be involved in the pathogenesis of DM.  相似文献   

13.
Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIalpha subunit would reveal those tissues and signaling events that require anchored PKA. RIIalpha knockout mice appear normal and healthy. In adult skeletal muscle, RIalpha protein levels increased to partially compensate for the loss of RIIalpha. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIalpha knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA-AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIalpha subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIalpha subunit. The potentiation of the L-type Ca2+ channel in RIIalpha knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIalpha is capable of physiologically relevant anchoring interactions.  相似文献   

14.
15.
BACKGROUND: The RB/p105 and p107 genes of the retinoblastoma family are tumor suppressor genes whose proteins are inactivated by interaction with T-antigen proteins encoded by polyomaviruses (e.g., simian virus 40 and human JC virus), which have been found to be highly tumorigenic in animals. A variety of indirect evidence suggests that another member of the retinoblastoma gene family, RB2/p130, is also a tumor suppressor gene. To investigate the putative tumor suppressor activity of RB2/p130 more directly, we utilized a tetracycline-regulated gene expression system to control expression of the encoded protein pRb2/p130 in JC virus-induced hamster brain tumor cells and to study the effects of pRb2/p130 on the growth of such tumor cells in nude mice. The ability of pRb2/p130 to interact with JC virus T antigen was also studied. METHODS: Northern blot hybridization analyses were performed on samples of total cellular RNA to measure RB2/p130 and beta-actin messenger RNA levels. Immunoprecipitation and western blot analyses were used to determine T-antigen and pRb2/p130 protein levels and to assess the phosphorylation status of these proteins. Tumor cells were injected subcutaneously into nude mice, and tumor growth, with or without induced expression of pRb2/p130, was monitored. RESULTS: Induction of pRb2/p130 expression brought about a 3.2-fold, or 69% (95% confidence interval = 64%-73%), reduction in final tumor mass in nude mice. We also demonstrated that JC virus T antigen binds hypophosphorylated pRb2/p130 and that stimulation of pRb2/p130 expression overcomes cellular transformation mediated by this antigen. CONCLUSION: Our findings support the hypothesis that RB2/p130 is a tumor suppressor gene.  相似文献   

16.
The major isoform of fibroblast growth factor 3 (FGF3) is initiated from a CUG codon, and the resultant product is distributed to the nucleus/nucleolus and secretory pathway. This dual subcellular localization is achieved in part by the competing effects of two classical intracellular targeting signals located near the amino terminus. At the extreme amino terminus is a short stretch of 29 amino acids before a signal peptide necessary for translocation into the endoplasmic reticulum, which is next to an adjacent bipartite nuclear localization signal. The carboxyl-terminal region of FGF3 is also implicated in nuclear/nucleolar localization. We describe here the characterization of carboxyl-terminal signals by showing they are capable of directing a heterologous protein, beta-galactosidase, to the nucleus. Furthermore, appending both the amino- and carboxyl-terminal domains onto beta-galactosidase, reproduces the dual subcellular localization properties of FGF3. Nuclear uptake of FGF3 appears to be signal-mediated since it binds to karyopherin alpha, the nuclear localization signal binding subunit of a heterodimeric receptor of the nuclear import machinery. The import of FGF3 into the nucleus is energy-dependent, and the inhibition of this process has demonstrated the importance of the nucleolar retention signal in nucleoplasmic and nucleolar accumulation.  相似文献   

17.
Myotonic dystrophy (DM), an autosomal dominant neurological disorder, is caused by CTG-repeat expansions at the DMPK locus, with affected individuals having > or = 50 repeats of this trinucleotide. Reduced reproductive fitness of affected individuals and decreased viability of congenital DM have been noted. Expanded CTG-repeat alleles are highly unstable, predominantly yielding even higher repeat sizes. Preferential transmission of longer alleles from heterozygous mothers within the normal size range of alleles also is observed. In view of these observations, it is worth examining how DM has been maintained in human populations for hundreds of generations. We present an analysis of the dynamic properties of a model of joint effects of segregation distortion and selection (intensity of which increases with allele sizes of an individual's genotype). Our mathematical formulation and numerical analyses demonstrate that a weak segregation distortion during female meiosis, together with selection of comparable intensity (within the normal allele size range), can maintain an equilibrium distribution of allele frequencies. Genetic drift, acting in conjunction with the occasional contraction of alleles by mutation, can contribute to the balance of segregation distortion and mutation, in the sense that even weaker selection can explain the observed allele frequencies. The model is applied to CTG-repeat size distributions at the DMPK locus, observed in normal individuals from world populations.  相似文献   

18.
19.
We have established a mouse model for human LCAT deficiency by performing targeted disruption of the LCAT gene in mouse embryonic stem cells. Homozygous LCAT-deficient mice were healthy at birth and fertile. Compared with age-matched wild-type littermates, the LCAT activity in heterozygous and homozygous knockout mice was reduced by 30 and 99%, respectively. LCAT deficiency resulted in significant reductions in the plasma concentrations of total cholesterol, HDL cholesterol, and apoA-I in both LCAT -/- mice (25, 7, and 12%; p < 0. 001 of normal) and LCAT +/- mice (65 and 59%; p < 0.001 and 81%; not significant, p = 0.17 of normal). In addition, plasma triglycerides were significantly higher (212% of normal; p < 0.01) in male homozygous knockout mice compared with wild-type animals but remained normal in female knockout LCAT mice. Analyses of plasma lipoproteins by fast protein liquid chromatography and two-dimensional gel electrophoresis demonstrated the presence of heterogenous prebeta-migrating HDL, as well as triglyceride-enriched very low density lipoprotein. After 3 weeks on a high-fat high-cholesterol diet, LCAT -/- mice had significantly lower plasma concentrations of total cholesterol, reflecting reduced levels of both proatherogenic apoB-containing lipoproteins as well as HDL, compared with controls. Thus, we demonstrate for the first time that the absence of LCAT attenuates the rise of apoB-containing lipoproteins in response to dietary cholesterol. No evidence of corneal opacities or renal insufficiency was detected in 4-month-old homozygous knockout mice. The availability of a homozygous animal model for human LCAT deficiency states will permit further evaluation of the role that LCAT plays in atherosclerosis as well as the feasibility of performing gene transfer in human LCAT deficiency states.  相似文献   

20.
The phosphorylation state of three identified neural-specific protein kinase C substrates (RC3, GAP-43/B-50, and MARCKS) was monitored in hippocampal slices of mice lacking the gamma-subtype of protein kinase C and wild-type controls by quantitative immunoprecipitation following 32Pi labeling. Depolarization with potassium, activation of glutamate receptors with glutamate, or direct stimulation of protein kinase C with a phorbol ester increased RC3 phosphorylation in wild-type animals but failed to affect RC3 phosphorylation in mice lacking the gamma-subtype of protein kinase C. Our results suggests the following biochemical pathway: activation of a postsynaptic (metabotropic) glutamate receptor stimulates the gamma-subtype of protein kinase C, which in turn phosphorylates RC3. The inability to increase RC3 phosphorylation in mice lacking the gamma-subtype of protein kinase C by membrane depolarization or glutamate receptor activation may contribute to the spatial learning deficits and impaired hippocampal LTP observed in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号