首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用热压缩试验获得了铸态AZ31B镁合金高温变形时的流变曲线,分析了变形温度和应变速率对流动应力的影响。结果表明:峰值应变随着应变速率增加和温度减小而增大,减小应变速率、适当提高变形温度对材料的动态回复和再结晶是有利的。利用多元回归分析建立了流动应力预测模型,该模型可以描述流动应力的应变敏感性,经验证发现使用其预测流动应力具有较高精度,相关系数高达0.9926,能较好地描述铸态AZ31B镁合金在热变形过程的流动行为。  相似文献   

2.
AZ31B镁合金热压缩力学行为与本构方程建立   总被引:1,自引:1,他引:0  
根据对铸态AZ31B镁合金在温度为280~440℃、应变速率为0.001~0.1 s-1条件下进行热压缩试验,分析了变形程度、应变速率和加热温度对其流动应力的影响,结果表明,该合金热变形时的流动应力对变形温度和变形速率极为敏感,随变形温度的升高而降低,随变形速率的增加而增大.在温度为440℃,应变速率小于0.01 s-...  相似文献   

3.
采用Gleeble-3500热模拟试验机,在变形温度300℃~420℃、应变速率0.000 5 s-1~0.5 s-1的变形条件下,对铸态AZ80+0.4Ce镁合金进行热压缩试验。试验研究了该合金的高温流动应力变化规律,采用金相显微镜分析了温度、应变速率对微观组织的影响。结果表明:铸态AZ80+0.4Ce镁合金的高温流动应力-应变曲线主要以动态再结晶软化机制为特征,增加变形温度和降低应变速率都会降低材料的流动应力;热压缩温度越高,动态再结晶进行越充分,应变速率越大,动态再结晶晶粒越细。  相似文献   

4.
铸态AZ31B镁合金热压缩流变应力   总被引:6,自引:4,他引:2  
在Gleeble-1500热模拟机上,对铸态AZ31B镁合金在温度280℃~440℃和应变速率0.001s-1~0.1s-1条件下,研究其流变应力行为.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力,其真应力-应变曲线表现出明显的动态再结晶特征;可采用Zener-Hollomon参数的双曲正弦函数来描述AZ31B镁合金高温变形时的流变应力行为;获得流变应力σ解析表达式中的A、α和n值分别为7.59×109s-1、0.015MPa-1和4.91,激活能Q为141.6kJ/mol.  相似文献   

5.
以铸态AZ31B镁合金为研究对象,时效处理(400℃×12h)后,在Gleeble-3800热模拟机上进行了变形温度为250 450℃、应变速率为0.01 10s-1的热模拟压缩试验,通过高速摄影技术确定了合金热压缩过程中的临界开裂应变,结合有限元模拟确定了热压缩临界开裂损伤值。结果发现,经典Freudenthal准则能够很好地反映高速摄影技术和热模拟压缩试验观察到的试样表面裂纹萌生以及扩展的现象,结果与金相观察一致。因此,基于Freudenthal准则,通过引入Zener-Hollomon因子来表征镁合金热变形过程的临界开裂损伤值随变形温度和应变速率的变化,建立了适用于铸态AZ31B镁合金的热变形开裂准则。该准则很好地揭示了镁合金热变形的临界开裂损伤值与应力状态、应变、变形温度和应变速率等变形参数之间的关系,为铸态AZ31B镁合金热变形开裂预测提供了理论支撑,为该合金热加工参数的优化奠定了技术基础。  相似文献   

6.
官磊  成波 《热加工工艺》2012,41(20):82-84,88
利用Gleeble-1500在250~500℃和应变速率0.001~1 s-1对铸态AZ31镁合金进行热压缩及热拉伸试验,对热变形过程中拉-压不对称性进行研究;基于Hollomon公式,分析了铸态AZ31镁合金热拉伸-压缩过程中应变硬化指数的变化规律.结果表明:铸态镁合金在热拉伸-压缩过程中,存在明显拉-压不对称性,热拉伸应变硬化指数均比热压缩应变硬化指数大;升高形变温度及降低应变速率有利于减小铸态镁合金的拉-压不对称性.  相似文献   

7.
在Gleeble-3500热模拟试验机上对AZ31B镁合金薄板(0.6 mm)拉伸试样在100~350℃的温度范围和1×10-1~1×10-3s-1的应变速率范围内进行了的单向拉伸实验,根据实验结果对AZ31B镁合金薄板的力学性能进行了分析.结果表明:AZ31B镁合金薄板在较低变形温度100~150℃时,应变速率对流动应力的影响不大;相比之下应变速率对AZ31B镁合金的断裂伸长率却有一定的影响,提高应变速率会降低材料的伸长率;在较高变形温度(200℃以上)时,应变速率对流动应力的影响比较明显,表现出显著的应变速率敏感性.  相似文献   

8.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

9.
铸态AZ31B镁合金热压缩实验研究   总被引:2,自引:1,他引:1  
研究了铸态AZ31B镁合金在温度280~440℃和应变速率10-3~10-1s-1范围内的变形规律.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力.其真应力-真应变曲线表现出明显的动态再结晶特征.再结晶晶粒明显细化,晶粒尺寸随着温度或Z(Zener-Hollomon常数)值的下降而增大.在低应变速率下可以得到相对均匀的变形组织.  相似文献   

10.
采用Gleeble-1500D热模拟机对AZ31B-0.8Nd稀土镁合金在应变速率为0.01~1s-1,温度为300~450℃,最大变形量约为70%的条件下,进行了恒应变速率高温压缩模拟实验,研究了实验合金在高温变形时的流变应力与应变速率及变形温度之间的关系和组织变化。结果表明:合金的流变应力随应变速率的增大而增加,随应变温度的升高而减小;在应变速率和变形温度相同时,挤压态试样的流变应力明显低于铸态试样的流变应力,压缩变形量对应力应变关系的影响很小。探明了镁合金变形软化的主要机制是动态再结晶。根据实验分析,合金的热加工宜在400~450℃温度范围内进行,并且挤压态较铸态更易热挤压成型,更有助于晶粒细化。  相似文献   

11.
1 INTRODUCTIONThewroughtmagnesiumalloyshaveexcellentspecificstrengthandstiffness ,machinability ,dampcapacity ,dimensionalstability ,lowmeltingcostsandare ,hence ,veryattractiveinsuchapplicationsasau tomobile ,aviation ,electronicandcommunicationin dustry[16 ] .Investigationsontheflowstressandsofteningbehaviorofmagnesiumalloysathigherformingtem peratureandstrainratehavebeenanimportantsub jectinwroughtmagnesiumalloysforming[710 ] .InthispapertheflowstressandsofteningbehaviorofAZ31Bdeform…  相似文献   

12.
AZ31镁合金热变形流动应力预测模型   总被引:1,自引:0,他引:1  
采用近等温单轴压缩实验获得了AZ3l镁合金变形温度为523 723 K,应变速率为0.01—10 s-1条件下的流动应力,分析了变形温度和应变速率对流动应力的影响规律.结果表明,AZ31镁合金变形过程中发生了动态再结晶,523 K时形成细小组织;而723 K时动态再结晶和长大的晶粒沿径向拉长.考虑实验过程塑性变形功和摩擦功引起的温度升高,在高应变速率条件下采用温度补偿修正了流动应力.在此基础上,建立了基于双曲正弦模型的峰值流动应力和统一本构关系,该模型利用材料参数耦合应变来描述流动应力的应变敏感性,进一步获得了合金热变形过程中流动应力与变形温度、应变速率和应变的定量关系.采用该本构关系模型预测流动应力具有较高的精度,预测值与实测值相关系数为0.976,平均相对误差为5.07%,实验条件范围内预测的流动应力与实验值几乎能保持一致.  相似文献   

13.
本文建立了三维元胞自动机(3D-CA)模型,通过热压缩试验和电子背散射衍表征技术(EBSD),对AZ31镁合金在热变形过程中的微观组织演化规律进行可视化和定量预测。根据试验得出的真应力-应变曲线,确定了3D-CA模型参数在试验条件下的取值,建立了模型参数与变形条件(应变、变形温度和应变速率)之间的关系。利用所建立的3D-CA模型,对AZ31镁合金在热变形过程中的流动行为和微观组织演化进行模拟和讨论。结果表明:再结晶体积分数随着应变的增大而增加,随着变形温度的增大或应变速率降低而增大,提高应变速率或降低温度可以细化再结晶晶粒。模拟结果与实验结果吻合较好,相对误差值在4.5%-16.2%之间,所建立的3D-CA模型能够较准确地预测镁合金AZ31的微观组织演化。  相似文献   

14.
Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy were calculated to characterize the deformation mechanism. Then, the effects of hot deformation parameters on deformation mechanism,microstructure evolution and hot workability of AZ31 alloy were discussed. With increasing deformation temperature, the operation of non-basal slip systems and full development of dynamic recrystallization(DRX) contribute to effective improvement in hot workability of AZ31 alloy. The influences of strain rate and strain are complex. When temperature exceeds 350 °C, the deformation mechanism is slightly dependent of the strain rate or strain. The dominant mechanism is dislocation cross-slip, which favors DRX nucleation and grain growth and thus leads to good plasticity. At low temperature(below 350 °C), the deformation mechanism is sensitive to strain and strain rate. Both the dominant deformation mechanism and inadequate development of DRX deteriorate the ductility of AZ31 alloy. The flow instability mainly occurs in the vicinity of 250 °C and 1 s-1.  相似文献   

15.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

16.
针对不同加工方法制备的AZ31B镁合金薄板,利用热拉伸试验机和金相显微镜对其在不同温度和变形速率下的流变应力进行了实验研究。结果表明,变形温度和变形速率对热拉伸时镁合金的流变应力有显著影响,峰值流变应力随应变速率的降低和变形温度的升高而降低。峰值流变应力随板材的厚度增加而发生变化,低温时厚度效应较为明显。退火处理对冷轧板的峰值流变应力影响较小,冷轧板可直接用于热加工成形。峰值流变应力变化规律:挤压板>热轧板>冷轧板。  相似文献   

17.
根据镁合金AZ31B的高温流动应力曲线,建立了包含应变的三维加工图,反映了温度、应变和应变速率对功率耗散系数和流变失稳区的影响,确定了合适的热变形范围,即温度为250-325℃、应变速率为0.1~1s^-1。在此基础上,研究了镁合金直齿锥齿轮的锻造成形,制定了无齿形预锻和终锻两步等温锻造工艺,在MSC.Marc平台上进行了锻造过程的模拟,基于模拟结果,完成了镁合金直齿锥齿轮的锻造成形实验。  相似文献   

18.
AZ80镁合金热变形流变应力研究   总被引:1,自引:1,他引:0  
在应变速率为0.001s-1~10s-1,变形温度为200℃~400℃条件下,在Gleeble-3800热模拟机上对AZ80合金的流变应力进行了研究。结果表明,AZ80合金的流变应力强烈地受变形温度的影响,当变形温度低于300℃时,其峰值流变应力呈现幂指数关系;当变形温度高于300℃时,其峰值流变应力呈现指数关系。在该文实验条件下,AZ80合金热变形应力指数n=8.43,热变形激活能Q=165.83kJ/mol。  相似文献   

19.
采用等压法,通过等温热压缩实验获得了AZ31镁合金变形温度和应变速率分别在473~673 K和0.005~5 s-1条件下对临界断裂应变的影响规律,以及Zener-Hollomon表达式,据此针对AZ31建立了临界断裂应变与变形温度和应变速率间的基本模型;在此基础上,基于镁合金轧制边裂的基本机理,引入CockcroftLatham断裂准则,建立了含有材料变形激活能和基本轧制工艺参数的AZ31镁合金轧制边裂预判模型;并通过相同条件下有限元模拟和热轧试验分别得到沿板宽方向损伤值和边部裂纹深度,以此对所建立的边裂预判模型进行验证,结果显示所建立边裂预判模型的预测值和实测值平均误差为11.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号