首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hoek-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field.  相似文献   

2.
It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the water-saturated red sandstone, analyzed the influences of confining pressure and pore pressure on dilatancy property of water-saturated rock, and discussed the reasonable basis of the stress of dilatancy onset as a strength design parameter of rock engineering, finally established the prediction model of the stress of dilatancy onset under the impacts of confining pressure and pore pressure. The results show that the strength parameters(the stress of dilatancy onset and peak strength) and deformation parameters(axial strain and circumferential strain) of water-saturated sandstone increase with the confining pressure, and the relations can be fitted with a positive linear function. The cohesion and internal friction angle obtained from the stress of dilatancy onset decrease by 11.57% and 7.33%, respectively, when compared with those obtained from the peak strength. The strength parameters and deformation parameters of water-saturated sandstone decrease basically with the increase of pore pressure, in which the relations between strength parameters or axial strain and pore pressure can be fitted with a negative linear function. However, the relation between the peak circumferential strain and the pore pressure should be characterized by a negative exponential function, and the circumferential strain at dilatancy onset isn't affected by the pore pressure.  相似文献   

3.
为了研究围压对灰岩力学特性及破坏力学模型的影响,采用MTS815对完整灰岩岩样进行三轴压缩试验。基于岩样宏观破坏形式,建立张拉剪切破坏模型,构建峰值强度与围压关系表达式;讨论张拉剪切模型与纯剪切模型对岩石剪切强度参数值(粘聚力与内摩擦角)的影响。研究结果表明:岩样弹性模量、抗压强度及残余强度均随围压升高而增大,且残余强度与围压呈非线性相关;当岩样最终破坏时,环向应变与轴向应变比值随围压升高呈负指数降低;一定围压范围内,岩石抗压强度受剪切强度参数和抗拉强度影响;张拉剪切模型确定岩石剪切强度参数值随破裂角增大而增大,与纯剪切模型相比,数值均较小。因此,低围压时,考虑岩石破坏模型具有一定的实际意义。  相似文献   

4.
As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To model the brittle behavior of intact rock blocks, the stress–strain curve is usually idealized considering a linear strength mobilization approach (cohesion-weakening-friction-strengthening, CWFS), however, it is well recognized that rock presents a nonlinear behavior in terms of the confining stress. This study extends the strength mobilization in brittle failure of rock using nonlinear criteria. To determine the model parameters, a standard statistical method that uses the complete laboratory stress–strain curves of the intact rock is employed. Several hypotheses of linear and nonlinear models are statistically compared for different types of rock and confining stress levels. Results demonstrate that the best approach to model the brittle failure of rock is to consider a nonlinear strength envelope, such as the Hoek-Brown criterion assuming a residual uniaxial compressive strength different from zero and a mi parameter that increases, both with simultaneous mobilization. This model helps to recreate high-confining conditions and a more realistic transition between peak and post-peak strength. The obtained parameters are discussed and compared with literature values to verify the validity and to develop guidelines for the estimation of parameters, providing an objective mobilization criterion. Finally, the nonlinear model was applied to a finite element code and extended to a tunnel scale in the brittle rock under high-stress conditions. A reasonable fit between the simulations and the in-situ overbreak measurements was found.  相似文献   

5.
针对西部矿区弱胶结软岩在复杂应力状态下的损伤行为,采用三轴压缩试验和等效应变原理,得到泥岩在三轴压缩下损伤变量的演化规律.基于weibull分布,引入修正系数λ建立可考虑泥岩残余阶段变形的统计损伤本构模型.结果分析表明:在三轴压缩下损伤变量呈先减小后增大的变化趋势,损伤演化过程没有水平段,表明受压时泥岩没有实际意义上的线弹性阶段;损伤变量减增变化的转折点恰好为全应力-应变曲线的屈服点和残余阶段起始点,说明该类泥岩的破坏起始于屈服点;当围压<3 MPa时,损伤起始点随围压增大而后移,当围压>3 MPa时,损伤初始点有前移的趋势,高围压下泥岩的峰前塑性提高,产生整体塑性剪切破坏;本构模型能够较准确地描述泥岩破坏的三阶段.  相似文献   

6.
To study the strength properties and evolution laws of cracked sandstone samples in re-loading tests,strength and damage evolution properties of intact sandstone samples were first analyzed through the triaxial compression tests carried on TAW-2000 microcomputer control electro-hydraulic servo rock triaxial test system. Damage evolution models were established based on dilatancy properties realizing the real-time and quantitative evaluation of samples damage state in loading process. On this basis, samples with different damage were obtained by pre-peak, peak point, post-peak and residual strength stage unloading tests in the loading process of intact samples. The characteristics of the stress-strain curves and strength evolution laws were studied through the re-loading tests of samples with different damage under different stress states. The experimental results showed that the slope of stress-strain curves, peak strength and residual strength of cracked samples increased linearly with confining pressure and decreased linearly with damage. The equivalent cohesion decreased with damage in the exponential decay curves. The mechanics properties of samples transformed from strain softening to strain hardening with damage.  相似文献   

7.
从可释放弹性应变能角度对岩石卸围压条件下破坏特性进行研究,利用MTS815电液压伺服可控制刚性试验机进行保持轴向变形不变的卸围压试验,根据卸围压试验数据,分析了该砂岩卸围压过程中变形、强度、弹性模量及能量变化特征。结果表明:随着围压逐渐降低,岩样发生侧向不断扩容;轴向应力逐渐降低,呈现出非线性特征;弹性模量在初始阶段几乎不变化,越过破坏点之后大幅降低;可释放的弹性应变能在初始阶段增大比较缓慢,当围压降低至一定程度时急剧增大;推导出基于可释放弹性应变能的卸荷岩石的整体破坏准则Ue0。  相似文献   

8.
In the light of the localized progressive damage model, the evolution law of cohesive and frictional strength with irreversible strains was determined. Then, the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law. The theoretical result is close to the result of in-situ test. The strength evolution law excels the elastic-perfectly plastic model and elasto-brittte plastic model in which the cohesive and frictional strength are mobilized simultaneously. The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law.  相似文献   

9.
基于Mohr准则,重新定义了岩石微元强度。考虑岩石微元强度服从随机分布的特点,结合损伤力学理论和统计强度理论,建立了三轴压缩条件下岩石损伤本构模型。为使建立的模型更具一般性,分析了模型参数与围压的关系,并据此对模型参数进行合理修正,从而建立出完整的岩石损伤本构模型。与试验结果比较,所建模型可以灵活地模拟各级围压下岩石破裂过程的全应力应变关系,尤其是应变软化特性。同时,该模型形式简单,应用方便,接近工程实际。  相似文献   

10.
为了认识真实的岩石材料破坏和强度衰减规律,通过多组常规的单轴压缩试验和不同围压下的三轴压缩试验对泥质细砂岩的材料破坏过程和抗压强度进行了实测.把前面试验破裂形成的不规则岩块浇注在混凝土制成的“剪切壳”中,运用XJ-1型携带式剪切仪进行了自行设计的压剪试验,获得了岩块在压剪过程中的剪切力一压应力关系曲线,以此来测得破裂岩块的自身材料强度.通过对比先前压缩试验得到的极限莫尔包络线,研究了破坏前完整岩样与破坏后损伤岩块间的强度变化.讨论了不同试验方法,损伤程度,尺寸效应,材料异性对岩石强度衰减的影响.结果表明,岩石在破坏过程中环向应变与体积应变在峰后近乎以直线形式增长,岩块抗剪强度表现出尺寸效应,岩样伴随着破裂演变材料强度发生衰减.  相似文献   

11.
Firstly, using the damage model for rock based on Lemaitre hypothesis about strain equivalence, a new technique for measuring strength of rock micro-cells by adopting the Mohr-Coulomb criterion was developed, and a statistical damage evolution equation was established based on the property that strength of micro-cells is consistent with normal distribution function, through discussing the characteristics of random distributions for strength of micro-cells, then a statistical damage constitutive model that can simulate the full process of rock strain softening under specific confining pressure was set up. Secondly, a new method to determine the model parameters which can be applied to the situations under different confining pressures was proposed, by deeply studying the relations between the model parameters and characteristic parameters of the full stress-strain curve under different confining pressures. Therefore, a unified statistical damage constitutive model for rock softening which can reflect the effect of different confining pressures was set up. This model makes the physical property of model parameters explicit, contains only conventional mechanical parameters, and leads its application more convenient. Finally, the rationality of this model and its parameters-determining method were identified via comparative analyses between theoretical and experimental curves.  相似文献   

12.
目前人们对岩石损伤后渗透性变化定性、定量方面的认识都存在不足,通过分析中国大量岩石全应力应变过程渗透性试验的成果,总结出目前岩石破损过程渗透性变化的4种类型。分析了岩石孔隙、裂隙、岩性等因素对于形成4种不同渗透性变化类型的影响,以及围压对渗透性发展演化的作用。峰值前一般渗透性随围压增加而减小,但峰后比较复杂,值得继续研究。统计分析了目前试验中岩石渗透性的变化范围,结果表明:一般软岩渗透性变化较小,脆性岩石渗透性变化较大。从目前围压1MPa-40MPa的全应力应变渗透性试验结果来看,97%渗透性变化不超过1000倍,其中85.9%渗透性变化不超过100倍。提出岩石破坏后是否出现高速非达西流需要从有效应力考虑,提出了渗流失稳与渗流作用下结构失稳的区别。  相似文献   

13.
To study the mechanical and damage evolution properties of sandstone under triaxial compression,we analyzed the stress strain curve characteristics,deformation and strength properties,and failure process and characteristics of sandstone samples under different stress states.The experimental results reveal that peak strength,residual strength,elasticity modulus and deformation modulus increase linearly with confining pressure,and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure.Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples,while macroscopic failure forms under uniaxial compression were shear failure,the shear failure angle of which decreased linearly with confining pressure.There were significant volume dilatation properties in the loading process of sandstone under different confining pressures,and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage,and established damage constitutive model,realizing the real-time quantitative evaluation of samples damage state in loading process.  相似文献   

14.
According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large deformation. Firstly, a segmented mechanical model was established in which free and anchoring section of rock bolt were respectively arranged in different deformation zones. Then, stress and displacement in elastic non-anchoring zone, elastic anchoring zone, elastic sticking zone, softening sticking zone and broken zone were derived respectively based on neural theory and tri-linear strain softening constitutive model of soft rock. Results show that the anchoring effect can be characterized by a supporting parameter b. With its increase, the peak value of tangential stress gradually moves to the roadway wall, and the radial stress significantly increases, which means the decrease of equivalent plastic zone and improvement of confining effect provided by anchorage body. When b increases to 0.72, the equivalent plastic zone disappears, and stresses tend to be the elastic solutions. In addition, the anchoring effect on the displacement of surrounding rock can be quantified by a normalization factor δ.  相似文献   

15.
The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.  相似文献   

16.
以Mohr强度理论为基础,利用岩石微元强度服从对数正态随机分布的特点,得到了三轴压缩条件下的岩石损伤统计本构模型,并根据试验曲线采用最小二乘法确定出模型参数.与试验结果比较,该模型可以很好地模拟岩石破裂过程的全应力应变关系,真实反映了岩石软化特性、岩石强度随围压变化等特性.在此基础上,讨论了对数正态参数R0,S0对岩石应力应变全过程曲线的影响.结果表明,参数R值的变化对岩石的强度有影响;参数S0值的变化对岩石的脆性有影响.  相似文献   

17.
认为岩土介质变形中出现的剪胀现象实质上是一个损伤过程.通过中密砂的三轴压缩试验,发现其在剪胀后,弹性模量和剪切模量大幅度下降,这进一步证实了剪胀的确是个损伤演化过程.引进了一个损伤变量描述这个过程,结果表明,损伤程度相对塑性体积应变的变化速率与初始固结压力相关,且随压力增大而减小.同时利用数值建模方法建立了砂土的弹塑性-损伤模型,考虑了弹塑性变形与损伤的耦合效应,获得了相应的应力应变关系及它的三维曲面.  相似文献   

18.
剪胀对岩样全部变形特征的影响   总被引:11,自引:0,他引:11  
采用FLAC内嵌语言FISH编制了计算平面应变压缩岩样轴向、侧向、体积应变及泊松比的FISH函数,研究了剪切扩容对剪切带图案及岩样全部变形特征的影响。在峰值强度之前及之后,岩石的本构模型分别取为线弹性及莫尔库仑剪破坏与拉破坏复合的应变软化模型。分析表明,增加剪胀角使岩样由单一向共轭剪切破坏转变,并使接近Arthur倾角的剪切带倾角增加。剪切带宽度随剪胀角增加,可由基于梯度塑性理论且考虑剪胀后的剪切带宽度公式进行解释。剪胀角增加导致峰值强度及对应的轴向、侧向及体积应变增加。在峰后,由于剪胀引起剪切带条数及宽度增加,因而,轴向应力-轴向及侧向应变曲线软化段都变平缓。剪胀角较高时,岩样可获得更大的侧向变形量及泊松比,甚至是负的体积应变;岩样失稳破坏的前兆更加明显。  相似文献   

19.
脆性评价对岩石(尤其是深部岩石)的可压裂、开挖损伤及岩爆等特性的研究具有重要意义.为此,总结国内外岩石脆性评价方法,基于现有脆性指数在定量表征岩石脆性程度中的局限性,考虑能够模拟岩石应力-应变全过程曲线的统计损伤本构模型,分析岩石的损伤演化特征,提出一种基于统计损伤本构关系的岩石脆性特征评价新方法,建立脆性指数BD定量表征岩石的脆性程度,通过模型理论论证和室内三轴压缩试验验证脆性指数的合理性.结果表明:脆性指数BD能很好地表征岩石的脆性特征,基于统计损伤本构关系的岩石脆性评价方法具有较好的适用性;通过大理岩、花岗岩以及塔木素黏土岩不同围压下的物理实验,验证脆性指数BD的正确性及相比其他方法的优越性;随着围压的增大,塔木素黏土岩表现出明显的脆性破坏向塑性破坏转变的特征.  相似文献   

20.
为了研究温度效应对路基粗粒填料静力剪切特性的影响,对GDS大三轴试验系统进行温控模块升级,采用循环流体加热模式实现对试样温度的精准控制. 选取浙江省某路基采石场碎石填料进行饱和排水剪切试验,分析不同温度下低围压路基填料静力剪切特性. 基于试验数据,建立剪胀指数与围压之间的关系,对von Wolffersdorff亚塑性模型进行改进以反映路基填料在低围压下的剪胀性. 在此基础上,提出温度对粗粒填料剪胀性及强度影响的本构关系式,建立考虑温度效应的路基填料亚塑性模型. 研究表明,温度升高使密实路基填料表现出软化现象,峰值强度随温度升高而降低;路基填料围压越高,峰值强度随温度的衰减越明显;残余强度基本不受温度变化影响. 所建立的模型能够模拟低围压填料强度与围压的非线性关系,准确反映不同温度下密实路基填料的剪切特性,可以作为温度效应下粗粒土剪切特性模拟的有效工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号