首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
A real-scale coke bed furnace system has been successfully applied to vitrify the incineration ashes into glassy slags. The object of this research was to evaluate the effect of the system on the immobilization of metal species in the slag. Ashes and slag specimens were tested to identify their metal phase distribution following a sequential extraction procedure. The mobility of Al, Ca, Cd, Cr, Mg, Mn and Pb was noticeably reduced by vitrification. An important implication is the reduction of Cr(6+) to Cr(3+) along with its immobilization with this coke bed furnace. The Ni and Zn contents were relatively low in slag, indicating that their availability of mobile phases in ashes was reduced during vitrification. The XRD analyses identified the major crystalline phase in slag as ?kermanite, which is inert and helpful in metal immobilization. The phase distribution analysis also contributed to verify that the incorporation of Ca and Mg enhanced the encapsulation in the slag matrix. The low oxygen content in slag made the structure of silicate resistant to the proton-promoted attack and also enhanced the mobility reduction of matrix elements (Ca, Mg and Al) in the moderately reducible phase and also contributed to the immobilization of other metal species. However, the properties of slag also deserve further studies to ensure its long-term stability and safety.  相似文献   

2.
Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.  相似文献   

3.
Treatment of municipal solid waste incineration (MSWI) fly ash is becoming an important issue in China. A pilot-scale experiment was carried out to treat MSWI fly ash by using a diesel oil furnace (DOF) for more than 6 months. The effects of melting temperature on volume reduction, weight loss, compositional changes, and toxicity of leach water for molten slag have been investigated and reported. Results indicated that the volume reduction fraction of raw fly ash (RFA) and washed-fly ash (WFA) was 75–80% and the weight loss fraction was 23.8–30% at 1260–1350 °C. During the vitrification, CaO, A12O3, and SiO2 percentages in fly ash increased as the temperature increased, especially for SiO2, which was caused by both the decomposition of carbonates or sulfates and the volatilization of metal chlorides because the main components in secondary fly ash collected from fabric filter bags were NaCl and KCl. The leaching concentrations of heavy metals in molten slag were lower than the standard values of TCLP. The releasing levels of dioxin and other pollutants (such as SO2, HCl, CO, NOx, etc.) in flue gas were all lower than the Chinese standard.  相似文献   

4.
The understanding of the leaching behavior of organic carbon from incinerator bottom ash is an important aspect for the control of organic carbon emissions from landfills in order to minimize their potential risk to the environment. The leaching behavior of organic carbon from incinerator bottom ash samples, obtained from two different solid waste sources, as well as the effects of calcium (Ca) on organic carbon (DOC) leaching associated with pH were therefore investigated in this paper. The effect of pH on the leaching of DOC and other major elements from bottom ash was ascertained through pH-stat leaching experiments. Column leaching experiments were carried out to evaluate the dependence of the leached amount of DOC on Ca leaching. It was found that the bottom ash produced by incineration of municipal solid waste (MSW) was composed of two DOC fractions: DOC leached independent (fraction I) of Ca leaching, observed at alkaline-neutral pH, and DOC leached dependent (fraction II) on Ca leaching, observed at acid pH. However, the bottom ash produced by incineration of industrial solid waste (ISW) was composed of only DOC fraction I. The addition of calcium oxide during incineration and the differences in the paper to plastic ratio in the physical composition of the solid wastes incinerated would explain the distinct organic carbon leaching behaviors of bottom ash samples.  相似文献   

5.
6.
Different artificial ageing treatments were applied to fresh incinerator bottom ash with the aim of promoting/accelerating the natural reactions occurring over time on the mineral phases in the material. The weathering treatments included accelerated carbonation, treatment with air and treatment with nitrogen gas. Both fresh and treated bottom ashes were characterized for their mineralogical composition, acid neutralization capacity and leaching behavior of metals. The results were compared to those obtained from similar characterization of bottom ash samples weathered under atmospheric conditions for 4 years. The findings from the experimental campaign indicated that both the release of metals and the type of solubility-controlling solid phases varied as a function of the duration and type of ageing treatment. The most appreciable influence on mineralogy, acid neutralization behavior and metal leaching was observed for the 48 h carbonation treatment. It was also observed that 4-day aeration of bottom ash was capable of producing similar buffering behavior to that displayed by naturally aged bottom ash.  相似文献   

7.
The behaviour of Al in MSW incinerator fly ash during thermal treatment   总被引:3,自引:0,他引:3  
Fly ash from municipal solid waste (MSW) incinerators contains leachable metals, including potentially hazardous heavy metals. The metal content of the fly ash can be reduced by thermal treatment, which vaporizes the volatile metal compounds. After heat treatment of fly ash at 1000 degrees C for 3 h, less metal was able to be leached from the thermally treated ash than from the ash without thermal treatment. Al and Cr were the exceptions. These metals were more soluble in the ash that had been thermally treated. This paper focuses on the leaching behaviour of Al only. Both simple and sequential extraction leaching tests showed that the leachable Al for the heat-treated fly ash is about twice that of the untreated fly ash. The sequential test further revealed that (i) the majority of the leachable Al is associated with Fe-Mn oxides in the fly ash, and (ii) most of the unleachable Al resides in the silicate matrices of the heat-treated and untreated fly ash. Pure chemicals, Al(2)O(3), CaO and CaCl(2), simulating the relevant ingredients in the fly ash, were used for studying their reactions at 1000 degrees C. The aluminum compounds were identified by X-ray Diffraction (XRD). Two new chemical phases produced by the thermal treatment were identified; Ca(AlO(2))(2) and 12CaO.7Al(2)O(3). Their formation suggests a mechanism whereby thermal treatment of fly ash would produce more soluble Al.  相似文献   

8.
This study describes the partitioning of 20 trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and eight major and minor elements (Al, Ca, Fe, K, Mg, Na, Si, Ti) during the combustion of high ash content lignite. The experiments were carried out in the 0.3 MW(t) Middle East Technical University (METU) atmospheric bubbling fluidized bed combustor (ABFBC) test rig with and without limestone addition. Inert bed material utilized in the experiments was bed ash obtained previously from the combustion of the same lignite without limestone addition in the same test rig. Concentrations of trace elements in coal, limestone, bottom ash, cyclone ash and filter ash were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Partitioning of major and minor elements are influenced by the ash split between the bottom ash and fly ash and that the major proportion of most of the trace elements (As, Ba, Cr, Hg, Li, Mo, Ni, Sn, V, Zn) are recovered in fly ash. Limestone addition shifts the partitioning of Ba, Cr, Mo, Ni, Sn, V, Zn from bottom ash to fly ash.  相似文献   

9.
Vitrification of fly ash from municipal solid waste incinerator   总被引:34,自引:0,他引:34  
Fly ash from municipal solid wastes (MSW) incinerators in Korea contains a large amount of toxic materials and requires pertinent treatments. However, since fly ash in Korea has a high chlorine concentration, it is difficult to apply cementation and chemical treatment techniques. In this study, we report the vitrification of fly ash along with the properties of the glasses and leaching characteristics of heavy metal ions.Fly ash can be vitrified by melting at 1500 degrees C for 30 min with the addition of >5 wt.% of SiO2. Glasses showed Vickers hardness of 4000-5000 MPa, bending strength of 60-90 MPa and indentation fracture toughness of approximately 0.9 MPa m(1/2). Glasses also showed the excellent resistance against leaching of heavy metal ions with Cd2+ <0.04 ppm, Cr3+ <0.02 ppm, Cu2+ <0.04 ppm and Pb2+ <0.2 ppm. These results indicate that the vitrification technique is effective for the stabilization and recycling of toxic incinerator fly ash.  相似文献   

10.
Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analyses were used to characterise the microstructure and chemical composition of a glass and a glass-ceramic material obtained from incinerator filter fly ash. Although the as-quenched material (vitrified fly ash) was amorphous under the detection limits of XRD, a dispersion of droplets indicating glass-in-glass phase separation was observed. In the glass-ceramic material (crystallised vitrified fly ash), crystals belonging to the pyroxene group and spinels were identified. The microstructure of the glass-ceramic consisted of crystals embedded in an amorphous glassy phase. The crystalline phases contain a higher amount of metallic elements (e.g. Al, Cr, Fe, Ni and Zn and most probably also other heavy metals) than the residual glassy phase. A change of composition of the residual glass phase in the glass-ceramic product, in comparison with the parent glass, is considered to explain, in comparative terms, the higher toxic potential of the glass-ceramic over the glass. The present results demonstrate that for an accurate assessment of the correlation between toxicity, release of hazardous compounds and microstructure, high-resolution characterisation techniques must be employed. In this context, the effect of crystallisation on the chemical durability of the products remains as an important area for further research.  相似文献   

11.
The conventional method for converting incineration ash to slag employs a plasma type furnace. An analysis of ash melting characteristics was undertaken by changing the inner shield N2 gas flow rate, assuming a hollow cathode and the ash anode. Results show that heat input intensity characteristics on the ash depend strongly on the gas flow rate through the central hall of the tube cathode arc (TCA). The maximum temperature of the ash surface becomes about 3000-4000 K in a melting state. For a gas flow rate greater than 2 L/min, the shape of the heat input intensity on the ash is annular because of the gas flow. By adjustment of the inner shield gas flow rate, more practical melting of a wider area of the ash can be achieved with the intense annular heat input on the ash.  相似文献   

12.
13.
Dioxins and dioxin-like compounds released from municipal and industrial solid waste incinerators have been a serious problem from the viewpoint of environmental pollution control. Since these compounds are concentrated especially on fly ash, supplemental treatment systems to decompose/detoxify them are required after collecting the fly ash either by a bag filter or an electrostatic precipitator. The present work is aimed at developing a heat treatment technique for fly ash, which contains a large amount of calcium (Ca) derived from hydrated lime, at a temperature higher than 500°C by adding chemical additives to prevent the solidification of Ca-rich fly ash. As calcium hydroxychloride (CaClOH) in the Ca-rich fly ash was found to cause solidification of fly ash at high temperatures, sodium hydroxide, mullite and coal fly ash were added as additives prior to the heat treatment. As a result, the additives studied in the present work are effective for decomposing CaClOH and therefore suppressing the solidification of fly ash, and yet they promoted the decomposition/detoxification of dioxins.  相似文献   

14.
The temperature of carbon particles undergoing combustion in a fluidized bed is measured. Heat-transfer laws are ascertained.Notation a diffusivity of air - c heat capacity of air - D diffusion coefficient of oxygen in air - d0, d initial and running diameters of carbon sphere - di diameter of inert particles - k rate constant for carbon monoxide combustion - q calorific value of carbon oxidation to CO2 - T temperature difference between burning particle and fluidized bed - X, Xn oxygen concentration in the fluidized bed and on the surface of the burning particle - Z, Zn running concentration of carbon monoxide and concentration on the surface of the burning particle - heat-transfer coefficient between fluidized bed and burning particle - m maximum heat-transfer coefficient between fluidized bed and a stationary body submerged in the bed - masstransfer coefficient between fluidized bed and burning particle - thermal conductivity of air - kinematic viscosity of air - 0, gr, 4 density of oxygen, air, and inert material - relative thickness of burning gas layer - relative thickness of diffusion boundary layer Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 1, pp. 21–27, January, 1982.  相似文献   

15.
This study determined the polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) contents in ash in the super heater (SH), economizer (EC), semi-dryer absorber (SDA), fabric filter (FF), fly ash pit (FAP) and bottom residue (BR) in a municipal solid waste incinerator (MSWI). A high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) was utilized for analyzing 17 PCDD/F species. Experimental results showed that average PCDD/F contents in ash samples from the SH, EC, SDA, FF, FAP and BR were 0.102, 0.788, 0.210, 1.95, 2.04 and 0.0218 ng I-TEQ g(-1), respectively. PCDD/F content was very low in the SH and BR due to high temperatures (around 461 degrees C in the SH and 914 degrees C in combustion chamber). Conversely, total PCDD/F content was significantly high in ash samples from the EC (around 340 degrees C), mainly because the temperature is within the favorable range of 250-400 degrees C for PCDD/F formation due to de nova reformation mechanisms. Although the SDA operated at 245 degrees C, the PCDD/F content decreased very significantly, mainly because the temperature was relatively low and because calcium carbonate was introduced into flue gases to dechlorinate and dilute chlorine-containing species. PCDD/Fs were captured by the active carbon in the FF. Furthermore, the duration that fly ash remained in the FF was longer than that for other incinerator units, and thus causing an increasing trend of PCDD/Fs level downstream (except the SDA). Total PCDD/Fs emission factors (microg tonnes-waste(-1); microg I-TEQ tonnes-waste(-1)) in ash samples from different units were: SH (42.3; 0.846), EC (326; 6.12), SDA (58.1; 1.10), FF (1540; 61.3), FAP (2950; 107) and BR (537; 4.31). Most PCDD/Fs in ash were contributed by the FF (about 56%), and the generation of PCDD/Fs in ash was significant (about 35%) during the transfer process from different units to the FAP. A strong and positive correlation in a logarithmic form existed between PCDD/Fs and chlorine (Cl(-1)) contents in ash. In Taiwan, the government policy for incineration residues advocates their reuse as road sub-bases or secondary building materials provided that total PCDD/Fs content is below the legal limit (1 ng I-TEQ g(-1)). Thus, ash with total PCDD/Fs content below the legal limit, such as that from the SH, EC, SDA and BR, can be collected and transferred to the FAP and reused. Ash with total PCDD/Fs content exceeding the legal limit, such as that from the FF, should be collected separately and be treated properly before being disposal in a landfill.  相似文献   

16.
Chromium behavior during thermal treatment of MSW fly ash.   总被引:14,自引:0,他引:14  
Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled.Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.  相似文献   

17.
This paper presents parts of the results from a research project sponsored by Taiwan Environmental Protection Administration (TEPA), investigating both the physical and environmental properties of asphalt mixtures using different amount of incinerator bottom ash (IBA) as fine aggregate substitution. The Marshall mix design method was used to determine the design asphalt content and evaluate the potential performance of these IBA-asphalt mixtures. Water sensitivity and wheel track rutting were also performed on these mixtures. Leachates, from both laboratory and outdoor leaching tests, were performed to measure the concentration of selected heavy metals and the level of daphnia toxicity. While with adequate Marshall stability, the IBA-asphalt mixtures were shown to have excessively high Marshall flow and excessively low VMA (voids in the mineral aggregate). The results of the wheel tracking tests also indicated that the IBA-asphalt mixtures had low rutting resistance. The results of the water sensitivity test according to procedure of AASHTO T283 method showed that the IBA-asphalt mixtures had a higher tensile strength ratio (TSR) as compared with the conventional asphalt mixtures. Considering the environmental aspects, outdoor leaching tests showed that IBA had a high level of daphnia toxicity. From an ecological perspective, IBA could be identified as hazardous waste in Taiwan. However, after being mixed with asphalt binder, the concentration of heavy metals and the levels of daphnia toxicity were significantly reduced. The leachates of 10-day flat plate leaching tests on Marshall specimens containing IBA indicated that the heavy metal were undetectable and the daphnia toxicity was ineffective.  相似文献   

18.
A method of approximate thermal calculation of an endothermic roasting furnace with stepped heating and cooling zones is presented.DeceasedTranslated from Inzhenerno-Fizicheskii Zhurnal, Vol. 18, No. 2, pp. 351–352, February, 1970.  相似文献   

19.
The advantages of medical waste incineration include the sterilization of bacteria, stabilization of chemical activity, and reduction in waste volume. During the incineration of medical waste, dioxin is generated owing to the high chlorine content. Based on previous research, a conventional fluidized bed combustor with a minimum retrofit to dispose of medical waste without residual dioxins is presented in this study. Coal or pyrite was added to inhibit dioxin formation in the combustion chamber. Fly ash and activated carbon which had adsorbed dioxin were pelletized with adhesive material, and the pelletized fly ash was then recycled to the incinerator for burning. The pelletized fly ash with adhesive material was finally discharged as bottom ash. Bottom ash constitutes the net output of the entire incineration system. and its dioxin content can be neglected. An incineration system that does not produce dioxin residue was achieved; however, a better formula for the pelletized fly ash is still required.

Title page (short abstract)

  1. The emission of dioxin from medical waste incinerators can’t be eliminated by disabling PVC as a raw material of medical devices.

  2. Based on the knowledge shown in the previous literature, an integrated fluidized bed incineration system without dioxin residual installed in a large hospital is proposed in this study.

  3. There are many ways to reduce dioxin formation during the incineration process; however, conventional methods can’t eliminate the existence of dioxin in fly ash.

  4. Pelletized fly ash recycled to the incinerator for re-burning and discharged in the form of bottom ash which is considered dioxin free.

  相似文献   

20.
This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号