共查询到20条相似文献,搜索用时 15 毫秒
1.
目前在线学习资源推荐较多采用单目标转化方法,推荐过程中对学习者偏好考虑相对不足,影响学习资源推荐精度.针对上述问题,文中提出基于多目标优化策略的在线学习资源推荐模型(MOSRAM),在学习者规划时间内,以同时获得学习者对学习资源类型偏好度最大和难度水平适应度最佳为优化目标,设计具有向邻居均值学习能力和探索新区域能力的多目标粒子群优化算法(NEMOPSO),提出以MOSRAM为核心的在线学习资源推荐方法(NEMOPSO-RA).不同问题规模下融合经典多目标优化算法的推荐方法对比实验表明,NEMOPSO-RA可以有效提高在线学习资源的推荐精度和推荐性能. 相似文献
2.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
3.
4.
5.
基于混合细菌觅食算法的多目标优化方法 总被引:1,自引:0,他引:1
针对多目标优化求解过程中多个目标相互制约难以求解的特点,为了提高多目标优化问题的求解速度和精度,并保持最优解的多样性,提出了一种用粒子群改进的混合细菌觅食多目标优化算法。将粒子群算法的寻优更新机制作为细菌觅食算法中趋向性操作的更新机制,将所求得非劣解的拥挤度作为寻优迭代过程中最优值的选取条件。与细菌觅食算法和NS-GA-Ⅱ算法的仿真结果表明,在对多目标测试函数ZDT1~ZDT4和ZDT6的求解过程中,该算法不仅能提高精度和快速地得到Pareto解集,并能有效地保持所求最优解的多样性。 相似文献
6.
7.
8.
9.
利用多目标粒子群优化算法对电梯群控系统进行优化,建立电梯群控系统响应呼梯信号的综合评价目标函数,并对电梯群控系统的性能指标进行评估,从而确定最佳派梯方案. 相似文献
10.
随着建筑物和乘客流的多样化,电梯的优化调度逐渐发展成为复杂在线多目标优化过程,然而,传统的优化调度已经很难满足电梯群控系统中的多个性能指标同时进行优化的要求.文中针对这一情况,首先通过分析电梯群控系统的目标多样性,复杂性,不确定性等特点,应用多目标优化理论建立了电梯群控系统的多目标优化数学模型;其次分析了粒子群算法与模拟退火算法的优缺点,对粒子群算法进行了改进,提出了一种新型混合优化算法;同时,在建立的多目标优化数学模型的基础上,将此混合算法应用到电梯群控系统中进行优化调度.将混合算法与标准粒子群进行比较,表明该混合算法具有一定的可行性与优越性,在一定程度上改进了电梯群控系统的整体性能和服务质量.该文为电梯群控系统的调度策略提供了新方法,新思路,并扩充了粒子群算法的应用范围. 相似文献
11.
12.
多任务粒子群优化算法(multi-task particle swarm ptimization, MTPSO)通过知识迁移学习,具有快速收敛能力,广泛应用于求解多任务多目标优化问题.然而, MTPSO难以根据种群进化状态自适应调整优化过程,容易陷入局部最优,收敛性能较差.针对此问题,利用强化学习的自我进化与预测能力,提出一种基于Q学习的多任务多目标粒子群优化算法(QM2PSO).首先,设计粒子群参数动态更新方法,利用Q学习方法在线更新粒子群算法的惯性权重和加速度参数,提高当前粒子收敛到Pareto前沿的能力;其次,提出基于柯西分布的突变搜索策略,通过全局和局部交替搜索多任务最优解,避免算法陷入局部最优;最后,设计基于正向迁移准则的知识迁移方法,采用Q学习方法更新知识迁移率,改善知识负迁移现象.与已有经典算法的对比实验结果表明所提出的QM2PSO算法具有更优越的收敛性. 相似文献
13.
在基本的MCPSO算法中除了主群与从群的信息交流,从群之间没有信息交流。为了解决这一问题,提出了一种具有中心交流机制的改进MCPSO算法,该策略可以实现各个从群之间的信息交流,从而加快算法收敛。仿真实验结果表明改进后的算法具有较好的求解精度和较快的收敛速度。 相似文献
14.
针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。 相似文献
15.
16.
基于双极偏好控制的多目标粒子群优化算法 总被引:2,自引:0,他引:2
考虑双极偏好信息对粒子群的控制作用,提出一种使用双极偏好——正偏好和负偏好引导粒子群向
Pareto 前沿偏好区域进化的方法.根据TOPSIS 决策法思想,将外部种群粒子与正负偏好点的相对贴近度排序作为
外部种群管理和全局最优解更新策略;根据贴近度值确定解集的分布度;选取6 种不同类型的多目标测试函数进行
算法模拟,从世代距离、空间测度和超体积测度3 个指标与基于单极偏好的多目标粒子算法进行性能比较.结果显
示,基于双极偏好控制的多目标粒子群算法的收敛性和综合性能更优秀. 相似文献
17.
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization algorithm for Multi-Strategy,MS-MOPSO)。采用非支配排序和拥挤距离排序相结合策略,重新划分外部种群和进化种群;采用小生境选择策略,在外部种群中选择最佳粒子作为领导粒子,用于领导进化种群中粒子的进化;在进化种群中利用多尺度高斯变异策略,平衡算法的全局搜索和局部精确搜索;采用邻域认知个体极值更新策略,不断更新个体极值。将该算法应用到典型的多目标测试函数,并与其他多目标优化算法进行对比分析,测试结果表明该算法中四个策略的有效性和互补性,同时验证了该算法不但具有较好的收敛性和收敛速度,而且该算法最优解的分布具有良好的均匀性和多样性。 相似文献
18.
基于混沌的多目标粒子群优化算法 总被引:1,自引:0,他引:1
针对多目标优化问题,提出了一种改进的粒子群算法.该算法为了寻找新解,引入了混沌搜索技术,同时采用了一种新的方法--拥挤距离法定义解的适应度.并采取了精英保留策略,在提高非劣解集多样性的同时,使解集更加趋近于Pareto集.最后,把算法应用到4个典型的多目标测试函数.数值结果表明,该算法能够有效的收敛到Pareto非劣最优目标域,并沿着Pareto非劣目标域有很好的分散性. 相似文献
19.
20.
多示例学习是不同于传统机器学习的一种新的学习模式,近年来被应用于图像检索、文本分类等领域。提出一种基于在线学习的多示例学习算法,将其应用于目标跟踪。该算法通过构造一个在线学习的多示例分类器作为检测器,无需制作大量的样本进行离线的训练,只需在第一帧手动选中目标,便可以自动生成正样本和负样本,并在随后的帧序列中,根据跟踪到的目标自动更新分类器,在跟踪器丢失目标或者目标从场景中消失后,它能够重新检测到目标并更新跟踪器,从而有效地支持了跟踪器跟踪目标。实验证明该方法在背景复杂,光线变化,摄像机抖动等复杂条件下,可以很好地跟踪到目标,且对遮挡具有较好的鲁棒性。 相似文献