首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了在连续和动态的环境中处理智能体不断变化的需求,我们通过利用强化学习来研究多机器人推箱子问题,得到了一种智能体可以不需要其它智能体任何信息的情况下完成协作任务的方法。强化学习可以应用于合作和非合作场合,对于存在噪声干扰和通讯困难的情况,强化学习具有其它人工智能方法不可比拟的优越性。  相似文献   

3.
多智能体强化学习综述   总被引:1,自引:0,他引:1  
  相似文献   

4.
多智能体深度强化学习的若干关键科学问题   总被引:6,自引:0,他引:6  
孙长银  穆朝絮 《自动化学报》2020,46(7):1301-1312
强化学习作为一种用于解决无模型序列决策问题的方法已经有数十年的历史, 但强化学习方法在处理高维变量问题时常常会面临巨大挑战. 近年来, 深度学习迅猛发展, 使得强化学习方法为复杂高维的多智能体系统提供优化的决策策略、在充满挑战的环境中高效执行目标任务成为可能. 本文综述了强化学习和深度强化学习方法的原理, 提出学习系统的闭环控制框架, 分析了多智能体深度强化学习中存在的若干重要问题和解决方法, 包括多智能体强化学习的算法结构、环境非静态和部分可观性等问题, 对所调查方法的优缺点和相关应用进行分析和讨论. 最后提供多智能体深度强化学习未来的研究方向, 为开发更强大、更易应用的多智能体强化学习控制系统提供一些思路.  相似文献   

5.
多智能体深度强化学习研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
多智能体深度强化学习是机器学习领域的一个新兴的研究热点和应用方向,涵盖众多算法、规则、框架,并广泛应用于自动驾驶、能源分配、编队控制、航迹规划、路由规划、社会难题等现实领域,具有极高的研究价值和意义。对多智能体深度强化学习的基本理论、发展历程进行简要的概念介绍;按照无关联型、通信规则型、互相合作型和建模学习型4种分类方式阐述了现有的经典算法;对多智能体深度强化学习算法的实际应用进行了综述,并简单罗列了多智能体深度强化学习的现有测试平台;总结了多智能体深度强化学习在理论、算法和应用方面面临的挑战和未来的发展方向。  相似文献   

6.
AGV(automated guided vehicle)路径规划问题已成为货物运输、快递分拣等领域中一项关键技术问题。由于在此类场景中需要较多的AGV合作完成,传统的规划模型难以协调多AGV之间的相互作用,采用分而治之的思想或许能获得系统的最优性能。基于此,该文提出一种最大回报频率的多智能体独立强化学习MRF(maximum reward frequency)Q-learning算法,对任务调度和路径规划同时进行优化。在学习阶段AGV不需要知道其他AGV的动作,减轻了联合动作引起的维数灾问题。采用Boltzmann与ε-greedy结合策略,避免收敛到较差路径,另外算法提出采用获得全局最大累积回报的频率作用于Q值更新公式,最大化多AGV的全局累积回报。仿真实验表明,该算法能够收敛到最优解,以最短的时间步长完成路径规划任务。  相似文献   

7.
针对协作多智能体强化学习中的全局信用分配机制很难捕捉智能体之间的复杂协作关系及无法有效地处理非马尔可夫奖励信号的问题,提出了一种增强的协作多智能体强化学习中的全局信用分配机制。首先,设计了一种新的基于奖励高速路连接的全局信用分配结构,使得智能体在决策时能够考虑其所分得的局部奖励信号与团队的全局奖励信号;其次,通过融合多步奖励信号提出了一种能够适应非马尔可夫奖励的值函数估计方法。在星际争霸微操作实验平台上的多个复杂场景下的实验结果表明:所提方法不仅能够取得先进的性能,同时还能大大提高样本的利用率。  相似文献   

8.
针对多无人艇对海上逃逸目标的围捕问题,提出一种基于多智能体强化学习的围捕算法.首先,以无人艇协同进攻为背景建立无边界围捕问题的环境和运动学模型,并针对快速性和合围性的需求给出围捕成功的判定条件;然后,基于多智能体近端策略优化(MAPPO)算法建立马尔可夫决策过程框架,结合围捕任务需求分别设计兼具伸缩性和排列不变性的状态空间,围捕距离、方位解耦的动作空间,捕获奖励与步长奖励相结合的奖励函数;最后,采用集中式训练、分布式执行的架构完成对围捕策略的训练,训练时采用课程式学习训练技巧,无人艇群共享相同的策略并独立执行动作.仿真实验表明,在无人艇起始数量不同的测试条件下,所提出方法在围捕成功率和时效性上相较于其他算法更具优势.此外,当无人艇节点损毁时,剩余无人艇仍然具备继续执行围捕任务的能力,所提出方法鲁棒性强,具有在真实环境中部署应用的潜力.  相似文献   

9.
使用深度强化学习解决单智能体任务已经取得了突破性的进展。由于多智能体系统的复杂性,普通算法无法解决其主要难点。同时,由于智能体数量增加,将最大化单个智能体的累积回报的期望值作为学习目标往往无法收敛,某些特殊的收敛点也不满足策略的合理性。对于不存在最优解的实际问题,强化学习算法更是束手无策,将博弈理论引入强化学习可以很好地解决智能体的相互关系,可以解释收敛点对应策略的合理性,更重要的是可以用均衡解来替代最优解以求得相对有效的策略。因此,从博弈论的角度梳理近年来出现的强化学习算法,总结当前博弈强化学习算法的重难点,并给出可能解决上述重难点的几个突破方向。  相似文献   

10.
一种基于分布式强化学习的多智能体协调方法   总被引:2,自引:0,他引:2  
范波  潘泉  张洪才 《计算机仿真》2005,22(6):115-118
多智能体系统研究的重点在于使功能独立的智能体通过协商、协调和协作,完成复杂的控制任务或解决复杂的问题。通过对分布式强化学习算法的研究和分析,提出了一种多智能体协调方法,协调级将复杂的系统任务进行分解,协调智能体利用中央强化学习进行子任务的分配,行为级中的任务智能体接受各自的子任务,利用独立强化学习分别选择有效的行为,协作完成系统任务。通过在Robot Soccer仿真比赛中的应用和实验,说明了基于分布式强化学习的多智能体协调方法的效果优于传统的强化学习。  相似文献   

11.
隋丽蓉  高曙  何伟 《控制与决策》2023,38(5):1395-1402
船舶避碰是智能航行中首要解决的问题,多船会遇局面下,只有相互协作,共同规划避碰策略,才能有效降低碰撞风险.为使船舶智能避碰策略具有协同性、安全性和实用性,提出一种基于多智能体深度强化学习的船舶协同避碰决策方法.首先,研究船舶会遇局面辨识方法,设计满足《国际海上避碰规则》的多船避碰策略.其次,研究多船舶智能体合作方式,构建多船舶智能体协同避碰决策模型:利用注意力推理方法提取有助于避碰决策的关键数据;设计记忆驱动的经验学习方法,有效积累交互经验;引入噪音网络和多头注意力机制,增强船舶智能体决策探索能力.最后,分别在实验地图与真实海图上,对多船会遇场景进行仿真实验.结果表明,在协同性和安全性方面,相较于多个对比方法,所提出的避碰策略均能获得具有竞争力的结果,且满足实用性要求,从而为提高船舶智能航行水平和保障航行安全提供一种新的解决方案.  相似文献   

12.
多智能体强化学习(Multi-Agent Reinforcement Learning,MARL)在群体控制领域中被广泛应用,但由于单个智能体的马尔可夫决策模型被破坏,现有的MARL算法难以学习到最优策略,且训练中智能体的随机性会导致策略不稳定.本文从状态空间到行为空间的映射出发,研究同构多智能体系统的耦合转换,以提高策略的先进性及稳定性.首先,我们调查了同构智能体行为空间的重组,打破智能体与策略对应的固定思维,通过构建抽象智能体将智能体之间的耦合转换为不同智能体行为空间同一维度的耦合,以提高策略网络的训练效率和稳定.随后,在重组策略映射的基础上,我们从序列决策的角度出发,为抽象智能体的策略网络和评估网络分别设计自注意力模块,编码并稀疏化智能体的状态信息.重组后的状态信息经过自注意力编码后,能显示地解释智能体的决策行为.本文在三个常用的多智能体任务上对所提出方法的有效性进行了全面的验证和分析,实验结果表明,在集中奖励的情况下,本文所提出的方法能够学到比基线方法更为先进的策略,平均回报提高了20%,且训练过程与训练结果的稳定性提高了50%以上.多个对应的消融实验也分别验证了抽象智能体与自...  相似文献   

13.
14.
基于递阶强化学习的多智能体AGV 调度系统   总被引:3,自引:1,他引:3  
递阶强化学习是解决状态空间庞大的复杂系统智能体决策的有效方法。具有离散动态特性的AGV调度系统需要实时动态的调度方法,而具有MaxQ递阶强化学习能力的多智能体通过高效的强化学习方法和协作,可以实现AGV的实时调度。仿真实验证明了这种方法的有效性。  相似文献   

15.
现有装配任务规划方式多为人工规划,存在低效、高成本、易误操作等问题,为此分析了微装配操作的任务特点,以及对微装配中多操作臂协作与竞争关系进行了详细分析,并提出多智能体强化学习中符合微装配任务特点的动作空间、状态空间以及奖励函数的构建方法;利用CoppeliaSim仿真软件构建合理的仿真模型,对已有设备进行物理建模,构建了基于多智能体深度确定性策略梯度算法的学习模型并进行训练,在仿真环境中对设计的状态、动作空间以及奖励函数进行了逐项实验验证,最终获得了稳定的路径以及完整的任务实施方案;仿真结果表明,提出的环境构建方法,更契合直角坐标运动为主要框架的微装配任务,能够克服现有规划方法的不足,能够实现可实际工程化的多臂协同操作,提高任务的效率以及规划的自动化程度。  相似文献   

16.
如何在部分可观测的情况下实现智能体之间的协同配合是多智能体强化学习(MARL)中的一个重要问题。值函数分解方法解决了信用分配问题,是一种实现多智能体之间协同配合的有效方法,然而在现有的值函数分解方法中,智能体个体动作值函数仅取决于局部信息,不允许智能体之间进行显式的信息交换,阻碍了这一系列算法的性能,使其无法适用于复杂场景。为了解决这一问题,在值函数分解方法中引入智能体间的通信,为智能体提供有效的非局部信息以帮助其理解复杂环境。在此基础上,提出一个基于图神经网络的分层通信模型,通过图神经网络提取相邻智能体之间需要交换的有用信息,同时模型能够实现从非通信向充分通信过渡,在通信范围有限的情况下实现全局合作,适用于现实世界中通信范围受约束的情况。在星际争霸Ⅱ多智能体挑战赛(SMAC)环境和捕食者-猎物(PP)环境下进行实验,结果表明,在SMAC的4个不同场景下,该方法与QMIX、VBC等基线算法相比平均胜率提升2~40个百分点,并且能够有效解决非单调环境下的捕食者-猎物问题。  相似文献   

17.
臧嵘  王莉  史腾飞 《计算机应用》2022,42(11):3346-3353
通信是非全知环境中多智能体间实现有效合作的重要途径,当智能体数量较多时,通信过程会产生冗余消息。为有效处理通信消息,提出一种基于注意力消息共享的多智能体强化学习算法AMSAC。首先,在智能体间搭建用于有效沟通的消息共享网络,智能体通过消息读取和写入完成信息共享,解决智能体在非全知、任务复杂场景下缺乏沟通的问题;其次,在消息共享网络中,通过注意力消息共享机制对通信消息进行自适应处理,有侧重地处理来自不同智能体的消息,解决较大规模多智能体系统在通信过程中无法有效识别消息并利用的问题;然后,在集中式Critic网络中,使用Native Critic依据时序差分(TD)优势策略梯度更新Actor网络参数,使智能体的动作价值得到有效评判;最后,在执行期间,智能体分布式Actor网络根据自身观测和消息共享网络的信息进行决策。在星际争霸Ⅱ多智能体挑战赛(SMAC)环境中进行实验,结果表明,与朴素Actor?Critic (Native AC)、博弈抽象通信(GA?Comm)等多智能体强化学习方法相比,AMSAC在四个不同场景下的平均胜率提升了4 ~ 32个百分点。AMSAC的注意力消息共享机制为处理多智能体系统中智能体间的通信消息提供了合理方案,在交通枢纽控制和无人机协同领域都具备广泛的应用前景。  相似文献   

18.
作为机器学习和人工智能领域的一个重要分支,多智能体分层强化学习以一种通用的形式将多智能体的协作能力与强化学习的决策能力相结合,并通过将复杂的强化学习问题分解成若干个子问题并分别解决,可以有效解决空间维数灾难问题。这也使得多智能体分层强化学习成为解决大规模复杂背景下智能决策问题的一种潜在途径。首先对多智能体分层强化学习中涉及的主要技术进行阐述,包括强化学习、半马尔可夫决策过程和多智能体强化学习;然后基于分层的角度,对基于选项、基于分层抽象机、基于值函数分解和基于端到端等4种多智能体分层强化学习方法的算法原理和研究现状进行了综述;最后介绍了多智能体分层强化学习在机器人控制、博弈决策以及任务规划等领域的应用现状。  相似文献   

19.
车联网边缘计算是实现车联网系统低时延和高可靠性的关键技术,但现有方法普遍存在场景趋同和系统建模局限的问题,同时包含复杂的训练过程并面临维灾风险.通过结合云计算技术,提出一种基于多智能体强化学习的边云协同卸载方案.依据随机几何理论计算卸载节点覆盖概率,对车辆节点与卸载对象进行预配对.利用线性Q函数分解方法反映每个智能体多...  相似文献   

20.
多智能体深度强化学习方法可应用于真实世界中需要多方协作的场景,是强化学习领域内的研究热点。在多目标多智能体合作场景中,各智能体之间具有复杂的合作与竞争并存的混合关系,在这些场景中应用多智能体强化学习方法时,其性能取决于该方法是否能够充分地衡量各智能体之间的关系、区分合作和竞争动作,同时也需要解决高维数据的处理以及算法效率等应用难点。针对多目标多智能体合作场景,在QMIX模型的基础上提出一种基于目标的值分解深度强化学习方法,并使用注意力机制衡量智能体之间的群体影响力,利用智能体的目标信息实现量两阶段的值分解,提升对复杂智能体关系的刻画能力,从而提高强化学习方法在多目标多智能体合作场景中的性能。实验结果表明,相比QMIX模型,该方法在星际争霸2微观操控平台上的得分与其持平,在棋盘游戏中得分平均高出4.9分,在多粒子运动环境merge和cross中得分分别平均高出25分和280.4分,且相较于主流深度强化学习方法也具有更高的得分与更好的性能表现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号