首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.  相似文献   

2.
A miniaturized two-electrode electrochemical (EC) cell was developed and was coupled on-line with an electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer (ESI-FTICR MS). Electrochemistry on-line with mass spectrometry, EC/ESI-FTICR MS, of triphenylamine (TPA), which undergoes one-electron oxidation to form a radical cation (TPA*+), demonstrates a significant sensitivity enhancement compared to ESI-FTICR MS. The on-line EC cell configuration with a stainless steel ES needle as the working electrode produces the highest sensitivity in EC/ESI-MS. The results provide evidence that, during the ES ionization, electrolytic reactions occur mainly in the ES tip region, as previously predicted. The results demonstrate that ESI-MS signal suppression by tetrabutylammonium perchlorate electrolyte, which can be a problem, is minimized in EC/ESI-MS. TPA*+ dimer tetraphenylbenzidine (TPB) can be detected by EC/ESI-MS, together with TPA*+, as TPB*+ and TPB2+. The high mass resolving power of FTICR MS was exploited to identify TPB2+ dication in the presence of [TPA*+ - H*]+ ions of the same m/z, from their respective isotopic distributions. The dimer dication TPB2+ can be detected only in EC/ESI-MS.  相似文献   

3.
An on-line technique has been demonstrated for the analysis of photochemical oxidation reaction products. The technique is based on the direct introduction of gas and particulate oxidation products into a custom-built atmospheric sampling glow discharge ionization source (ASGDI) coupled to a quadrupole ion trap mass spectrometer (QITMS). Operational parameters of the ASGDI system were investigated to determine their influence on the ion signal for the analysis of oxidation products in real time. These parameters include the discharge current, ion accumulation time, and type of reagent gas. Reference mass spectra from standards were generated for a variety of biogenic compounds and terpene reaction products containing keto, hydroxy, aldehyde, carboxylic acid, or epoxy groups to better understand the fragmentation that occurs in the glow discharge ion source. Results are presented for ozonolysis reactions of four biogenic monoterpenes (alpha-pinene, beta-pinene, D-limonene, Delta(3)-carene) monitored with the ASGDI quadrupole ion trap to demonstrate the ability to obtain real-time measurements. The reaction products identified with ASGDI-QITMS correspond to those products identified with other techniques, including on-line atmospheric pressure chemical ionization techniques. Efficient differentiation of multifunctional products including mono-/di-/hydroxy-/keto-carboxylic acid and keto-/hydroxy-aldehyde was possible by use of the MS/MS capability of the instrument.  相似文献   

4.
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple PKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.  相似文献   

5.
Mass spectrometry and tandem mass spectrometry of citrus limonoids   总被引:2,自引:0,他引:2  
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.  相似文献   

6.
Schaaff TG 《Analytical chemistry》2004,76(21):6187-6196
Positive and negative ions generated by laser-based ionization methods from three gold:thiolate cluster compounds are mass analyzed by time-of-flight mass spectrometry. The three compounds have similar inorganic core masses ( approximately 29 kDa, approximately 145 Au atoms) but different n-alkanethiolate ligands associated with each cluster compound (Au:SR, R = butane, hexane, dodecane). Irradiation of neat films (laser desorption/ionization) and films generated by dilution of the cluster compounds in an organic acid matrix (matrix-assisted laser desorption/ionization) with a nitrogen laser (337 nm) produced distinct ion abundances that are relevant to different structural aspects of the cluster compound. Laser desorption/ionization of neat Au:SR compound films produces ions consistent with the inorganic core mass (i.e., devoid of original hydrocarbon content). Matrix-assisted laser desorption/ionization produces either ions with m/z values consistent with the core mass of the cluster compounds or ions with m/z values consistent with the approximate molecular weight of the cluster compounds, depending on ionization conditions. The ion abundances, and ionization conditions under which they are detected, provide insight into desorption/ionization processes for these unique cluster compounds as well as other analytes typically studied by matrix-assisted laser desorption/ionization.  相似文献   

7.
A new sample ionization technique, atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI), was coupled with a commercial ion trap mass spectrometer. This configuration enables the application-specific selection of external atmospheric ionization sources: the electrospray/APCI (commercially available) and AP MALDI (built in-house), which can be readily interchanged within minutes. The detection limit of the novel AP MALDI/ion trap is 10-50 fmol of analyte deposited on the target surface for a four-component mixture of peptides with 800-1700 molecular weight. The possibility of peptide structural analysis by MS/MS and MS3 experiments for AP MALDI-generated ions was demonstrated for the first time.  相似文献   

8.
An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring.  相似文献   

9.
Mixtures of inorganic ions separated by capillary electrophoresis (CE) and ion exchange chromatography (IC) are detected by mass spectrometry (MS) using an ion spray atmospheric pressure ionization source. The selectable degree of ion-adduct declustering and molecular fragmentation in the MS interface region allows the system to be operated as an elemental analyzer or as a molecular detector suitable for oxidation state determinations. Both inorganic anions and cations (including alkalis, alkaline earths, transition metals, and lanthanides) are analyzed by CE-MS. A variety of CE separation buffers are evaluated for the cation analyses (e.g., creatinine, ammonium acetate, and tris[hydroxymethyl]aminomethane). Only one of the buffers (i.e., creatinine) can be used for CE-indirect UV detection. A CE capillary permanently coated with strong anion exchange sites and a pyromellitic acid buffer (suitable for indirect UV detection) is used for the inorganic anion separations. The coated column eliminates the need for buffer modifiers to reverse the flow in the capillary, which then reduces background noise and mass spectral complexity. The separation and detection of 13 inorganic anions are also accomplished by IC using an anion exchange column with a carbonate-bicarbonate mobile phase, on-line suppressed conductivity detection, and mass spectrometric detection.  相似文献   

10.
The formation of multiply charged molecular ions via the field-assisted ion evaporation mechanism during electrospray ionization enables the use of an atmospheric pressure ionization quadrupole mass spectrometer system for characterizing biologically important peptides. The straightforward implementation of high-performance liquid chromatography (HPLC) into this new strategy to determine the molecular weight of tryptic peptides via the pneumatically assisted electrospray (ion spray) interface is presented. Examples utilizing both microbore (1.0 mm) and standard bore (4.6 mm) inside diameter columns are shown for the LC/MS molecular weight determination of tryptic peptides in methionyl-human growth hormone (met-hGH). Injected levels from 50 to 75 pmol of tryptic digest onto 1 mm i.d. HPLC columns provided full-scan LC/MS or LC/MS/MS results without postcolumn splitting of the effluent. When standard 4.6 mm i.d. HPLC columns were used, a 20:1 postcolumn split was utilized, which required from 1 to 5 nmol of injected tryptic digest for full-scan LC/MS or LC/MS/MS results. Collision-induced dissociation (CID) mass spectra resulting from either "infusion" or on-line LC/MS/MS analysis of the abundant doubly charged ions that predominate for tryptic peptides under electrospray conditions provided structurally useful sequence information for met-hGH and human hemoglobin tryptic digests. The slower mass spectrometer scan rate used during infusion of sample provides more accurate mass assignments than on-line LC/MS or LC/MS/MS, but the latter on-line experiments preclude ambiguities caused by matrix or component interferences. However, in some instances very weak CID product ions preclude complete tryptic peptide structural characterization based upon the CID data alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The ability to observe abundant gas-phase metal cluster ions in electrospray ionization mass spectrometry (ESI-MS) is highly dependent on experimental conditions. Alkali halides (MX) and other alkali metal salts were used to investigate the formation of cluster ions in ESI-MS. All compounds were found to give cluster ions of the form (M(n)(+1)X(n))(+) and (M(n)X(n+1))(-), with only two alkali salts yielding doubly charged cluster ions. In homologous alkali halide series, the relative abundances of cluster ions increased with increasing size of either the cation (positive ion mode) or the anion (negative ion mode). Calculations using an electrostatic model show that the gas-phase stability of cluster ions is greater for smaller cations or anions when a fixed counterion is employed. This stability calculation goes in a direction just opposite to the trend in cluster ion abundances observed in ESI-MS. Studies of equimolar mixtures consisting of two alkali halides reveal two distinct trends. When the equimolar mixture was composed of differing ions that participate in the droplet charge excess with the same counterion, the less solvated ions were found to form more abundant cluster ions. When the ions participating in the charge excess were fixed, the preferred counterion in observed clusters was the one that is more solvated in solution and forms more stable clusters in the gas phase. These observations can be rationalized by an extended form of the charged residue model where the weakly solvated ions that are part of the charge excess are preferentially enriched in offspring droplets during uneven fission. By contrast, transfer of a particular counterion located in the bulk of the droplets to the offspring droplets is not disfavored when this counterion is strongly solvated.  相似文献   

12.
The influence of Co2+ ions on the homogeneous nucleation of ZnO is examined. Using electronic absorption spectroscopy as a dopant-specific in-situ spectroscopic probe, Co2+ ions are found to be quantitatively excluded from the ZnO critical nuclei but incorporated nearly statistically in the subsequent growth layers, resulting in crystallites with pure ZnO cores and Zn(1-x)Co(x)O shells. Strong inhibition of ZnO nucleation by Co2+ ions is also observed. These results are explained using the classical nucleation model. Statistical analysis of nucleation inhibition data allows estimation of the critical nucleus size as 25 +/- 4 Zn2+ ions. Bulk calorimetric data allow the activation barrier for ZnO nucleation containing a single Co2+ impurity to be estimated as 5.75 kcal/mol cluster greater than that of pure ZnO, corresponding to a 1.5 x 10(4)-fold reduction in the ZnO nucleation rate constant upon introduction of a single Co2+ impurity. These data and analysis offer a rare view into the role of composition in homogeneous nucleation processes, and specifically address recent experiments targeting formation of semiconductor quantum dots containing single magnetic impurity ions at their precise centers.  相似文献   

13.
The dependences of the Gibbs energy, entropy, and work of formation on the sizes of the centers of nucleation of a condensed phase with the size of up to 533 molecules formed on singly charged sodium cations and chlorine anions in water vapor at the temperature of 400 K have been calculated on the molecular level by the Monte Carlo method. It has been shown that, when the detailed interaction model is used, the effect of pulling the ion from microdroplets is kept at relatively high temperatures, accelerating the loss of the thermodynamic stability of the center of nucleation and the formation of the typical nucleation barrier, the same as in homogeneous microdroplets. When ion admixtures are present, the free energy barrier to the growth of centers of nucleation in strongly supersaturated vapors is considerably lowered. The nucleation velocity and minimum relative contents of the ion admixtures, able to accelerate nucleation, have been estimated in the region of strong supersaturation.  相似文献   

14.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

15.
Chen G  Wong P  Cooks RG 《Analytical chemistry》1997,69(17):3641-3645
Substituted 1,2-diphenylethanes undergo competitive dissociations upon electron ionization (EI) to generate substituted benzyl cation and benzyl radical pairs. Application of the kinetic method to the previous reported EI mass spectra of these covalently bound precursor ions (data are taken from McLafferty et al. J. Am. Chem. Soc. 1970, 92, 6867)) is used to estimate the ionization energies of substituted benzyl free radicals. A correlation is observed between the Hammett σ constant of the substituents and the kinetic method parameter, ln(k(x)/k(H)), where k(x) is the rate of fragmentation to give the substituted product ion and k(H) is the rate to give the benzyl ion itself. Systems involving weakly bound cluster ions, including proton-bound dimers of meta- and para-substituted pyridines and meta- and para-substituted anilines, and electron-bound dimers of meta- and para-substituted nitrobenzenes, also show good correlations between the kinetic method parameter and the Hammett σ constant.  相似文献   

16.
Lazar IM  Lee ML  Lee ED 《Analytical chemistry》1996,68(11):1924-1932
The interfacing of capillary column supercritical fluid chromatography (SFC) to time-of-flight mass spectrometry (TOFMS) through atmospheric pressure chemical ionization (APCI) was investigated. An ion source chamber and a new, flexible, and efficient transfer line from the SFC to the TOFMS system were designed to accommodate the requirements of this study. Ionization of analytes was performed using a corona discharge needle. The interface was equipped with two multiple-axis translation stages for positioning of the transfer line tip and the discharge needle inside the ion chamber. The investigations were oriented toward the optimization of parameters which have a strong effect on the intensity and stability of the analyte signal, including background stability, corona discharge needle positioning in the ion source, transfer line tip and discharge needle relative positioning, curtain gas and makeup gas flow interactions, ion chamber temperature, and elution pressure of analytes from the SFC system.  相似文献   

17.
Organic aerosols are a major fraction, often more than 50%, of the total atmospheric aerosol mass. The chemical composition of the total organic aerosol mass is poorly understood, although hundreds of compounds have been identified in the literature. High molecular weight compounds have recently gained much attention because this class of compounds potentially represents a major fraction of the unexplained organic aerosol mass. Here we analyze secondary organic aerosols, generated in a smog chamber from alpha-pinene ozonolysis with ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). About 450 compounds are detected in the mass range of m/z 200-700. The mass spectrum is clearly divided into a low molecular weight range (monomer) and a high molecular weight range, where dimers and trimers are distinguishable. Using the Kendrick mass analysis, the elemental composition of about 60% of all peaks could be determined throughout the whole mass range. Most compounds have high O:C ratios between 0.4 and 0.6. Small compounds (i.e., monomers) have a higher maximum O:C ratio than dimers and trimers, suggesting that condensation reactions with, for example, the loss of water are important in the oligomer formation process. A program developed in-house was used to determine exact mass differences between peaks in the monomer, dimer, and trimer mass range to identify potential monomer building blocks, which form the co-oligomers observed in the mass spectrum. A majority of the peaks measured in the low mass region of the spectrum (m/z < 300) is also found in the calculated results. For the first time the elemental composition of the majority of peaks over a wide mass range was determined using advanced data analysis methods for the analysis of ultra-high-resolution MS data. Possible oligomer formation mechanisms in secondary organic aerosols were investigated.  相似文献   

18.
This paper discusses the principles and experimental status of gas cluster ion beam (GCIB) processing as a promising surface modification technique for practical industrial applications. Theoretical and experimental characteristics of GCIB processes and of related equipment development are described from the moment of neutral cluster formation, through ionization, acceleration and impact upon a surface. The impact of an accelerated cluster ion upon a target surface imparts very high energy densities into the impact area and produces non-linear effects that are not observed in the impacts of atomic ions. Unique characteristics of GCIB bombardment have been found to offer potential for various industrial applications that cannot be achieved by conventional ion beam processing. Among prospective applications are included shallow ion implantation, high rate sputtering, surface cleaning and smoothing, and low temperature thin film formation. Sputtering effects produced by cluster ion impact are particularly interesting. High sputtering yields and lateral distribution of sputtered atoms cause surface smoothing effects which cannot be achieved with monomer ion beams. Surface smoothing to atomic levels is expected to become the first production use of GCIB.  相似文献   

19.
The applicability of different ionization techniques, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and a novel atmospheric pressure photoionization (APPI), were tested for the identification of the phase II metabolites of apomorphine, dobutamine, and entacapone in rat urine and in vitro incubation mixtures (rat hepatocytes and human liver microsomes). ESI proved to be the most suitable ionization method; it enabled detection of 22 conjugates, whereas APCI and APPI showed only 12 and 14 conjugates, respectively. Methyl conjugates were detected with all ionization methods. Glucuronide conjugates were ionized most efficiently with ESI. Only some of the glucuronides detected with ESI were detected with APCI and APPI. Sulfate conjugates were detected only with ESI. MS/MS experiments showed that the site of glucuronidation or sulfation could not be determined, since the primary cleavage was a loss of the conjugate group (glucuronic acid or SO3), and no site-characteristic product ions were formed. However, it may be possible to determine the site of methylation, since methylated products are more stable than glucuronides or sulfates. Furthermore, the loss of CH3 is not necessarily the primary cleavage, and site characteristic products may be formed. Identification and comparison of conjugates formed from the current model drugs were successfully analyzed in different biological specimens of common interest to biomedical research. A fairly good relation was obtained between the data from in vivo and in vitro models of drug metabolism.  相似文献   

20.
A supercritical fluid chromatograph was previously interfaced to a mass spectrometer (SFC/MS) and the system evaluated for applications requiring high sample throughput using negative-mode atmospheric-pressure chemical ionization (APCI) (Ventura et al. Anal. Chem. 1999, 71, 2410-2416). This report extends the previous work demonstrating the effectiveness of SFC/MS, using positive ion APCI for the analysis of compounds with a wide range of polarities. Substituting SFC/MS for LC/MS results in substantial time saving, increased chromatographic efficiency, and more precise quantitation of sample mixtures. Flow injection analysis (FIA) also benefits from our SFC/MS system. A broader range of solvents is compatible with the SFC mobile phase compared with LC/MS, and solutes elute more rapidly from the SFC/MS system, reducing sample carryover and cycle time. Our instrumental setup also allows for facile conversion between LC/MS and SFC/MS modes of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号