首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, we present the effect of nitrogen incorporation on the dielectric function of GaAsN samples, grown by molecular beam epitaxy (MBE) followed by a rapid thermal annealing (for 90 s at 680 °C). The GaAs1 − xNx samples with N content up to 1.5% (x = 0.0%, 0.1%, 0.5%, 1.5%), are investigated using room temperature spectroscopic ellipsometry (SE). The optical transitions in the spectral region around 3 eV are analyzed by fitting analytical critical point line shapes to the second derivative of the dielectric function. It was found that the features associated with E1 and E1 + Δ1 transitions are blue-shifted and become less sharp with increasing nitrogen incorporation, in contrast to the case of E0 transition energy in GaAs1 − xNx. An increase of the split-off Δ1 energy with nitrogen content was also obtained, in agreement to results found with MOVPE GaAs1 − xNx grown samples.  相似文献   

2.
Z.H. Zhu  M.J. Sha  M.K. Lei   《Thin solid films》2008,516(15):5075-5078
1 mol%Er3+–10 mol%Yb3+ codoped Al2O3 thin films have been prepared on thermally oxidized SiO2/Si(110) substrates by a dip-coating process in the non-aqueous sol–gel method from the hydrolysis of aluminum isopropoxide [Al(OC3H7)3] under isopropanol environment. Addition of N,N-dimethylformamide (DMF) as a drying control chemical additive (DCCA) into the sol suppresses formation of the cracks in the Er3+–Yb3+ codoped Al2O3 thin films when the rare-earth ion is doped with a high doping concentration. Homogeneous, smooth and crack-free Er3+–Yb3+ codoped Al2O3 thin films form at the conditions by a molar ratio of 1:1 for DMF:Al(OC3H7)3. A strong photoluminescence spectrum with a broadband extending from 1.400 to 1.700 µm centered at 1.533 µm is obtained for the Er3+–Yb3+ codoped Al2O3 thin films, which is unrelated to the addition of DMF. Controllable formation of the Er3+–Yb3+ codoped Al2O3 thin films may be explained by the fact that the DMF assisted the deprotonation process of Al–OH at the surfaces of gel particles, resulting in enhancement of the degree of polymerization of sols and improvement of the mechanical properties of gel thin films.  相似文献   

3.
用固相反应法制备(Gd1-xErx)2(Zr0.8Ti0.2)2O7(摩尔分数x=0,0.2,0.4)陶瓷并测试其晶体结构、显微形貌和物理性能,研究了Er2O3掺杂的影响。结果表明,(Gd1-xErx)2(Zr0.8Ti0.2)2O7陶瓷具有立方烧绿石结构,显微结构致密,在室温至1200℃高温相的稳定性良好;Er3+掺杂降低了陶瓷材料的热导率和平均热膨胀系数,当x=0.2时,其1000℃的热导率最低(为1.26 W·m-1·k-1)。同时,Er3+掺杂还提高了这种材料的硬度和断裂韧性。  相似文献   

4.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

5.
Mg对La2Ce2O7的掺杂可提高其热膨胀系数、降低其热导率, 从而改善其作为热障涂层材料的性能。采用溶胶-凝胶法制备了(La1-xMgx)2Ce2O7-x系列组成样品。X射线测试表明: 当 0≤x≤0.4时, 所有(La1-xMgx)2Ce2O7-x 样品均与La2Ce2O7具有相同的缺陷萤石结构, 且晶胞参数随x的增大而递减; 当x?0.4时, 样品中出现MgO的峰。在组成相同的情况下, 样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随温度升高而增大, 而热导率随温度升高而降低。在相同温度下, 不同组成样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随x的增大而增大; 而样品的热导率则随Mg掺杂量的增加呈先增大后减小的趋势。在此基础上, 探讨了Mg掺杂对La2Ce2O7的物相、晶胞参数、热膨胀系数以及热导率的影响机理。  相似文献   

6.
A study of growth, structure, and properties of Eu2O3 thin films were carried out. Films were grown at 500–600 °C temperature range on Si(1 0 0) and fused quartz from the complex of Eu(acac)3·Phen by low pressure metalorganic chemical vapor deposition technique which has been rarely used for Eu2O3 deposition. These films were polycrystalline. Depending on growth conditions and substrates employed, these films had also possessed a parasitic phase. This phase can be removed by post-deposition annealing in oxidizing ambient. Morphology of the films was characterized by well-packed spherical mounds. Optical measurements exhibited that the bandgap of pure Eu2O3 phase was 4.4 eV. High frequency 1 MHz capacitance–voltage (CV) measurements showed that the dielectric constant of pure Eu2O3 film was about 12. Possible effects of cation and oxygen deficiency and parasitic phase on the optical and electrical properties of Eu2O3 films have been briefly discussed.  相似文献   

7.
Ozonation of C60 in o-xylene produced three C60(O3)2 diozonides that were separated from one another and from two C60(O3)3 triozonides by High Performance Liquid Chromatography (HPLC). Upon thermolysis at 10, 15, and 16.6°C, each of the diozonides dissociated sequentially, first to a C60O(O3) oxyozonide, then to a C60O2 diepoxide. The three diepoxides were stable in solution for at least 3 weeks. The mean lifetimes of the three diozonides were 52 ± 5, 62 ± 6, and 17.3 ± 1.8 min, respectively (all at 15°C). The mean lifetimes of the three oxyozonides were 69.7 ± 0.7 and 58 ± 6 min at 16.6°C, respectively and about 240 min at 10°C. Photolysis of the diozonides yielded two dioxidoannulenes with UV-Vis adsorption maxima at 333 and 332 nm, and what appeared to be an epoxide-oxidoannulene with UV-Vis adsorption maximum at 327 nm. These annulenes were observed to form dimers. We have synthesized and characterized six C60O2 dioxides, at least three and possibly four of which were hitherto unknown. We report the discovery of oxyozonides that form during the dissociation of diozonides.  相似文献   

8.
Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)3 (DPM = 2,2,6,6-tetramethyl-3,5-heptanedionato) and Ce(DPM)4 using the aerosol-assisted metal–organic chemical vapor deposition method. -Al2O3 and NiO-YSZ (YSZ = Y2O3-stabilized ZrO2) disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on either -Al2O3 or NiO-YSZ substrates at deposition temperatures above 450 °C; the similar structure between YSZ and SDC results in matching growth compared with the deposition on -Al2O3 substrate. A typical columnar structure could be obtained at 650 °C on -Al2O3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500 °C. The composition of SDC film deposited at 450 °C is close to that of precursor solution (Sm : Ce = 1 : 4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)3 and Ce(DPM)4 may be the key reason for the variation in composition with the increase of deposition temperature.  相似文献   

9.
Co3O4 nanoparticles and cobalt (fcc-Co) powders were successfully synthesized by solvothermal process from a single precursor. The reaction of Co(Ac)2 with sodium dodecylbenzenesulfonate (SDBS) shows evident-dependent temperature effect. At 180 °C, Co(Ac)2 reacts with SDBS to produce precursor CoCO3 plate structures, which are assembled by small nanoparticles. At the temperature of 250 °C, the precursor CoCO3 can be gradually decomposed to form Co3O4 nanoparticles with diameter of ca. 70 nm. While, at 250 °C, the reaction of Co(Ac)2 with SDBS also produce precursor CoCO3 nanoparticles/plates, but the CoCO3 nanoparticles/plates would only decompose to give metal Co. In this process, SDBS acts as not only a surfactant but also a reagent. Magnetic measurements reveal that the as-prepared Co3O4 nanoparticles exhibit weak ferromagnetic properties and Co powders show ferromagnetic properties. In addition, a possible formation mechanism was elaborately discussed.  相似文献   

10.
8 mol.% yttria-doped cubic zirconia (8Y-CSZ)/AI2O3 composites containing 0-30 vol.% Al2O3 particles were fabricated by sintering, followed by hot isostatic pressing (post-HIPing). All composites were densified to at least 99·5% of the theoretical density by post-HIPing. The bending strength of composites sintered at 1500°C in air was independent of A12O3 content, but a significant improvement in the bending strength was achieved by the post-HIPing technique. The bending strength and the fracture toughness of the HIPed composites increased with increasing A12O3 content. Ionic conductivity of the composites was evaluated and the total, lattice, and grain boundary conductivities slightly decreased with increasing A12O3 content. The HIPed composites containing up to 20 vol.% A1203 appear to be suitable candidate materials as electrolyte for solid oxygen fuel cell.  相似文献   

11.
Urea (CO(NH2)2) and its related compounds (biuret: NH(CONH2)2 and cyanuric acid: (CONH)3) were mixed with phosphoric acid (H3PO4) and neodymium oxide (Nd2O3). The thermal behavior of these dried mixtures was estimated by differential thermal analyses, X-ray diffraction, and Fourier-transform infrared spectroscopy. Furthermore, specific surface area of phosphates was calculated by BET method using nitrogen adsorption. The addition of urea prevented the crystal growth of Monazite-type NdPO4 in samples at P/Nd = 2 heated at 450 and 550 °C, and promoted the dehydration–condensation reaction of phosphate. Urea was considered to be decomposed at 400–450 °C in these systems. The decomposition of urea was considered to be related to the formation of neodymium dihydrogenphosphate and then this phosphate transformed to neodymium polyphosphate. The ratio of urea and phosphorus had influence on the promotion of the dehydration–condensation reaction. Thermal behavior of sample added with biuret or cyanuric acid was also investigated.  相似文献   

12.
Thin films of CaCO3 (calcite) have been grown with the atomic layer chemical vapour deposition (ALCVD) technique, using Ca(thd)2 (Hthd=2,2,6,6-tetramethylheptan-3,5-dione), CO2, and ozone as precursors. Pulse parameters for the ALCVD-type growth are found and self-limiting reaction conditions are established between 200 and 400 °C. Calcium carbonate films have been deposited on soda-lime glass, Si(100), -Al2O3(001), -Al2O3(012), -SiO2(001), and MgO(100) substrates. The observed textures were: in-plane oriented films with [100](001)CaCO3 [100](001)Al2O3 and [100](001)CaCO3[110](001)Al2O3 on -Al2O3(001), amorphous films on -Al2O3(012) when grown at 250 °C, and columnar oriented films on soda-lime glass, Si(001), -SiO2(001), and MgO(100) substrates with (00l) and (104) parallel to the substrate plane at 250 and 350 °C, respectively. The film topography was studied by atomic force microscopy and AC impedance characteristics were measured on as-deposited films at room temperature. The films were found to be insulating with a dielectric constant (r) typically approximately 8. Thin films of CaO were obtained by heat treatment of the carbonate films at 670 °C in a CO2-free atmosphere, but the thermal decomposition led to a significant increase in surface roughness.  相似文献   

13.
Sol–gel derived Bi2Ti2O7 ceramic powders have been prepared from methoxyethoxides of bismuth and titanium (molar ratio of Ti/Bi = 1.23 and water/alkoxides = 1.31). The Bi2Ti2O7 phase was stable at a low temperature (700 °C), but it then transformed into mixed phases of Bi4Ti3O12 and Bi2Ti4O11 at 850–1150 °C. The single phase of Bi2Ti2O7 reoccurred at 1200 °C. Dielectric properties and ferroelectric behavior of samples sintered at 1150 and 1200 °C were examined. Under frequency of 1 MHz, samples sintered at 1150 and 1200 °C had a dielectric constant of 101.3 and 104.2, and a loss tangent of 0.0193 and 0.0145, respectively. Only the sample sintered at 1150 °C showed ferroelectric behavior, where remanent polarization is 3.77 μC cm−2 and coercive field is 24 kV cm−1. Thus, the Bi2Ti2O7 did not exhibit ferroelectricity, but the mixed phase of Bi4Ti3O12 and Bi2Ti4O11 did.  相似文献   

14.
Chemical vapor co-deposition of Cu–Co films has been demonstrated using (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)Cu(II) [Cu(hfac)2] [hfac=hexafluoroacetylacetonate] and (acetylacetonate)Co(II) [Co(acac)2] [acac=acetylacetonate] as precursors. The deposition was performed at the substrate temperature of 270°C in a warm-wall impinging jet type reactor. The precursor Co(acac)2 was sublimed at 140°C to achieve reasonable precursor delivery rates and avoid decomposition of precursor in the sublimator. Films with varying Cu content from 17 wt.% to 98 wt.% were deposited by subliming Cu(hfac)2 in the temperature range of 40–100°C with a fixed Co(acac)2 delivery rate. The morphologies and crystallinities of the binary films were strongly dependent on the film stoichiometry. Overall, this study provides insights into the mechanism of Cu–Co binary film formation by CVD.  相似文献   

15.
采用硬脂酸盐熔融新方法合成了[(Y1-xLux)1-yCey]3Al5O12固溶体荧光粉(x=0’0.5, y=0.005’0.03), 并通过XRD、SEM、BET和PL-PLE等方法对该荧光粉进行了表征。结果表明, 纯相石榴石在800℃的低温下即可生成, 而不经过YAM和YAP中间相。煅烧所得[(Y1-xLux)1-yCey]3Al5O12 荧光粉具有良好的均一性和分散性, 并在455 nm蓝光激发下于544 nm附近呈现最强黄光发射。粉体的发光强度随煅烧温度升高而增大, 归因于结晶度提高和表面缺陷减少。发现Ce3+的荧光猝灭浓度为1.5%, 猝灭机制为Ce-Ce间的交换相互作用和晶格缺陷。发现发射峰位随Ce3+含量增加而红移, 而最强激发峰和发射峰随Lu3+含量增大而蓝移, 归因于Ce3+离子5d激发态能级重心移动和晶体场劈裂的共同作用。  相似文献   

16.
当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。  相似文献   

17.
Carburization performance of Incoloy 800HT has been studied after cyclic and isothermal exposures to CH4/H2 carburizing gas mixtures at high temperatures for 500 h. At 800 °C in 2% CH4/H2, Incoloy 800HT suffered external oxidation and carburization, the external continuous layer of reaction products consists primarily of Cr7C3, Mn1.5Cr1.5O4, and FeCr2O4 with Fe(Cr, Al)2O4 as a minor phase. At 1100 °C in 10% CH4/H2, external carburization did not occur likely due to high carbon dissolution in the alloy substrate at this temperature. A thermodynamic analysis indicated that 1000 °C was an approximate critical temperature, below which the environment should result in mixed oxidizing/carburizing behavior, while above this temperature reducing carburizing behavior should occur. The experimental results approximately agree with the thermodynamic analysis. Metal dusting was not observed under highly carburizing conditions (aC>1). The size and morphology of Cr-rich phases (or Cr-carbides) are both temperature- and time-dependent, while the external continuity is more temperature-dependent rather than time-dependent.  相似文献   

18.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

19.
The partial substitution of Zn2+ for Ag+ in Ag4P2O7 leads to the formation of a wide glassy domain of composition [Ag4P2O7] (1−y) [Zn2P2O7] (y) with 0.20y0.87. The introduction of AgI in these materials results in a new series of glasses of formula [(Ag4P2O7)(1−y) (Zn2P2O7)(y)] (1−X) [AgI] (x), which domain for the composition y = 0.25 corresponds to 0x 0.64. The structure as well as the thermal and electrical properties of these materials are compared with those of the [AgPO3] (1−X) [AgI] (x) and [Ag4P2O7] (1−x) [AgI] (x) glasses.  相似文献   

20.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号