首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cansell M  Nacka F  Combe N 《Lipids》2003,38(5):551-559
Liposomes made from an extract of natural marine lipids and containing a high n-3 PUFA lipid ratio were envisaged as oral route vectors for FA supplements in order to increase PUFA bioavailability. The absorption of FA in thoracic lymph duct-cannulated rats, after intragastric feeding of dietary fats in the form of liposomes or fish oil, was compared. Lipid and FA analyses were also performed on feces. Five mole percent α-tocopherol was added to fish oil and incorporated into the liposome membrane. The influence of α-tocopherol on FA lymph recovery was also investigated. In vivo, FA absorption in rats was favored by liposomes (98±1%) compared to fish oil (73±6%). In the same way, the DHA proportion in lymph was higher after liposome ingestion (78%) than after fish oil ingestion (47%). However, phospholipid (PL) concentration in lymph was not affected by the kind of dietary fat ingested, suggesting a PL regulation due to de novo TAG synthesis. The influence of the intramolecular distribution of n-3 PUFA in dietary lipids (TAG and PL) on the intramolecular FA distribution in TAG of chylomicrons was also investigated. The results obtained showed that the distribution of n-3 PUFA esterified on the sn-2 of chylomicron TAG depended on the lipid source administered. All these results correlated, at least partly, with in vitro liposome behavior under conditions that mimic those of the gastrointestinal tract. As a whole, this study pointed out that marine PL may constitute an attractive material for the development of liposomes as oral PUFA supplements.  相似文献   

2.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are polyunsaturated fatty acids (PUFA) of the n‐3 series. Fish oil is a classical source of n‐3 PUFA, where they occur in the form of triacylglycerols (TAG). However, new sources of n‐3 PUFA esterified in phospholipids (PL) are emerging. We prepared liposomes from a natural marine lipid extract and examined their behaviour under conditions mimicking that of the gastrointestinal tract. This physicochemical approach proved that liposomes could be used as an effective oral PUFA delivery system. In vivo studies in rats were performed to examine the metabolic fate of EPA (20:5 n‐3) and DHA (22:6 n‐3) delivered either in PL from liposomes or in TAG from oil. Liposome ingestion increased PUFA bioavailability in lymph compared with fish oil. The proportion of n‐3 PUFA esterified in the sn‐2 position of chylomicron TAG depended on the dietary lipid source. Complex time‐course profiles were observed for plasma lipids with liposome supplementation over a 2‐week period, suggesting time‐dependent regulations. Taken together, the type of PUFA, EPA or DHA, as well as its intramolecular distribution in chylomicron TAG seemed to influence the metabolic fate of the fatty acids and their physiological activities.  相似文献   

3.
Recent studies suggest that dietary krill oil leads to higher omega-3 polyunsaturated fatty acids (n-3 PUFA) tissue accretion compared to fish oil because the former is rich in n-3 PUFA esterified as phospholipids (PL), while n-3 PUFA in fish oil are primarily esterified as triacylglycerols (TAG). Tissue accretion of the same dietary concentrations of PL- and TAG-docosahexaenoic acid (22:6n-3) (DHA) has not been compared and was the focus of this study. Mice (n = 12/group) were fed either a control diet or one of six DHA (1%, 2%, or 4%) as PL-DHA or TAG-DHA diets for 4 weeks. Compared with the control, DHA concentration in liver, adipose tissue (AT), heart, and eye, but not brain, were significantly higher in mice consuming either PL- or TAG-DHA, but there was no difference in DHA concentration in all tissues between the PL- or TAG-DHA forms. Consumption of PL- and TAG-DHA at all concentrations significantly elevated eicosapentaenoic acid (20:5n-3) (EPA) in all tissues when compared with the control group, while docoshexapentaenoic acid (22:5n-6) (DPA) was significantly higher in all tissues except for the eye and heart. Both DHA forms lowered total omega-6 polyunsaturated fatty acids (n-6 PUFA) in all tissues and total monounsaturated fatty acids (MUFA) in the liver and AT; total saturated fatty acid (SFA) were lowered in the liver but elevated in the AT. An increase in the DHA dose, independent of DHA forms, significantly lowered n-6 PUFA and significantly elevated n-3 PUFA concentration in all tissues. Our results do not support the claim that the PL form of n-3 PUFA leads to higher n-3 PUFA tissue accretion than their TAG form.  相似文献   

4.
This paper presents the positional distribution of fatty acids in docosahexaenoic acid (22∶6n-3)-rich fish oil triacyl-sn-glycerols (TG). Stereospecific analysis of TG was carried out by a nonenzymatic method. The TG of bonito head oil, obtained after a winterization process, contained 22∶6n-3 at concentrations of 28,7, and 49 mole % in thesn-1,sn-2, andsn-3 positions, respectively. In the TG of oil before the winterization process, 22∶6n-3 was concentrated in thesn-3 position, followed evenly by thesn-1 andsn-2 positions. Tuna orbital oil, obtained after winterization, showed the preferential association of 22∶6n-3 to thesn-3 position, followed by thesn-1 position. This distribution pattern was similar to that observed for seal oil TG rather than sardine oil TG. The bonito head and tuna orbital oils are useful as fish oils with characteristics different from those of common fish oils, such as menhaden, sardine, and herring oils.  相似文献   

5.
The content of triacylglycerols (TAG) in krill oil is generally omitted from the labels of commercial supplements and unacknowledged in studies aimed at proving its health benefits. The present study demonstrates that TAG compounds, in addition to phospholipids and lysophospholipids, are an important lipid class in pure krill oil. The fatty acid composition of TAG molecules from krill oil and their distribution on the backbone of TAG structures were determined by gas chromatography and liquid chromatography tandem mass spectrometric, respectively. The content of omega 3 polyunsaturated fatty acids (n-3 PUFA) was similar to those reported in the literature for fish oil. It was estimated that 21 % of n-3 PUFA were at the sn-2 position of TAG structures. To our knowledge, this is the first determination and structural characterization of TAG in pure krill oil supplements.  相似文献   

6.
Triacylglycerol structure of human colostrum and mature milk   总被引:2,自引:0,他引:2  
Because triacylglycerol (TAG) structure influences the metabolic fate of its component fatty acids, we have examined human colostrum and mature milk TAG with particular attention to the location of the very long chain polyunsaturated fatty acid on the glycerol backbone. The analysis was based on the formation of various diacylglycerol species from human milk TAG upon chemical (Grignard degradation) or enzymatic degradation. The structure of the TAG was subsequently deduced from data obtained by gas chromatographic analysis of the fatty acid methyl esters in the diacylglycerol subfractions. The highly specific TAG structure observed was identical in mature milk and colostrum. The three major fatty acids (oleic, palmitic and linoleic acids) each showed a specific preference for a particular position within milk TAG: oleic acid for thesn-1 position, palmitic acid for thesn-2 position and linoleic acid for thesn-3 position. Linoleic and α-linolenic acids exhibited the same pattern of distribution and they were both found primarily in thesn-3 (50%) andsn-1 (30%) positions. Their longer chain analogs, arachidonic and docosahexaenoic acids, were located in thesn-2 andsn-3 positions. These results show that polyunsaturated fatty acids are distributed within the TAG molecule of human milk in a highly specific fashion, and that in the first month of lactation the maturation of the mammary gland does not affect the milk TAG structure.  相似文献   

7.
The present study compared thein vitro hydrolysis of two 18:3n-6-rich oils—evening primrose oil (EPO) and borage oil (BO)—and different synthetic 18:3n-6-containing triacylglycerols (TG). Incubation of EPO and BO with pancreatic lipase lipolyzed 18:3n-6 from the TG species. The rate of lipolysis of TG species containing two or three molecules of 18:3n-6, which comprised 36% of total 18:3n-6 in BO and only 7% in EPO, was significantly slower than those containing only one molecule of 18:3n-6. This was found especially in those with two molecules of linoleic acid, which constituted 20% of total 18:3n-6 in BO, whereas over 80% were present in EPO. In a separate study, various synthetic 18:3n-6-containing TG were also subjected toin vitro hydrolysis by pancreatic lipase. Results showed that release of 18:3n-6 from thesn-1/sn-3 positions was significantly slower when two other stereospecific positions in the same TG molecule were occupied by either palmitic acid (16:0) or monounsaturated (18:1 and 20:1) fatty acids than when occupied by 18:2n-6. The rate of hydrolysis ofsn-2-γ-linolenyl-sn-1(3)-diacylglycerol to formsn-2-mono-γ-linolenyl glycerol was also significantly slower when both thesn-1 andsn-3 positions in TG molecules were occupied by either saturated fatty acids (16:0 and 18:0) or long-chain monounsaturated fatty acids than when occupied by 18:2n-6. These findings suggest that the stereospecific position of 18:3n-6 in TG molecules and the constituent of its neighboring fatty acids modulated availability of 18:3n-6 from 18:3n-6-containing TG or 18:3n-6-rich oils.  相似文献   

8.
Porsgaard T  Kánský J  Mason S  Mu H 《Lipids》2005,40(3):273-279
Chylomicrons transport absorbed fat from the intestine to the circulation. During dietary fat absorption, the chylomicrons become larger in diameter, and in some studies an increase in chylomicron number has been observed as well. In the present study, we compared particle size and number in rat lymph following administration of four different oils. We administered fish oil, medium-chain TAG (MCT), and two structured oils differing in intramolecular structure, with either medium-chain FA in the outer positions of the TAG and long-chain n−3 PUFA in the sn-2 position (MLM oil) or with the reverse structure (LML oil), to lymph-cannulated rats and collected lymph in fractions for the following 8 h. Chylomicron size was measured by a particle size analyzer immediately after collection, and from these data the number of chylomicrons present was estimated. The number of particles in lymph increased during the absorption of oils containing long-chain PUFA (MLM, LML, and fish oil), whereas it was not affected by administration of MCT. The FA from MCT were probably absorbed via the portal vein; therefore, only a small number of particles were measured in lymph. When comparing the two structured oils, we observed a tendency toward a higher number of particles after LML administration, although the difference was not statistically significant. The highest number of particles after administration of all oils was observed in the size intervals 53–80 and 80–121 nm and probably represented small chylomicrons. Thus, the FA composition influenced the number of particles in lymph during absorption, whereas TAG structure had only a minor influence.  相似文献   

9.
Reportedly’ randomly rearranging the position of fatty acids (FA) in butterfat triacylglycerol (TAG) by interesterification’ thereby lowering the proportion of saturated FA in the sn-2 position’ reduces its hypercholesterolemic and hypertriglyceridemic properties when fed to humans. The aim of this work was to determine if these reductions in plasma cholesterol and TAG could be explained by an improved rate of clearance from the plasma of chylomicrons composed of randomized butterfat’ using a rat model. Acute chylomicron clearance studies demonstrated no differences in fractional clearance rates of cholesteryl esters and TAG from the plasma of rats infused with chylomicrons produced from gastric feeding of either native (NBF) or randomized (RBF) butterfat. Although there was a 14% decrease in the level of saturated FA occupying the sn-2 position of TAG in RBF compared with NBF’ this difference became negligible (∼5%)’ following digestion of the fat and subsequent repackaging of TAG into chylomicrons. These observations suggest that the previously observed reduction in hypercholesterolemic properties of randomized butterfat in rat is unlikely to be explained by improved clearance of chylomicron TAG.  相似文献   

10.
Although medium-chain FA (MCFA) are mainly absorbed via the portal venous system, they are also incorporated into chylomicron TAG; therefore, the positional distribution of MCFA in TAG is likely to affect their metabolic fate. We studied chylomicron and VLDL TAG structures, as well as the magnitude of postprandial lipemia, after two oral fat loads containing decanoic acid (10∶0) predominantly at the sn-1(3),2 (MML) or at the sn-1,3 positions (MLM) of TAG in a randomized, double-blind, crossover clinical trial with 10 healthy, normal-weight volunteers. An MS-MS method was used to analyze TAG regioisomers. The position of decanoic acid in chylomicron TAG reflected its position in the TAG ingested, and TAG with none, one, two, or three decanoic acid residues were detected after ingestion of both fats. More (P<0.05) 30∶0 and 38∶1 TAG (acyl carbons:double bonds) and fewer 46∶5, 54∶5 and 54∶4 TAG were found in chylomicrons after ingestion of MML than after MLM. The VLDL TAG composition did not differ between the fat loads but did change (P<0.05) 2 to 6 h after ingestion of both fats. No statistical differences were seen between the fat loads in areas under the plasma, chylomicron, or VLDL TAG response curves or in FFA concentrations. Thus, the positional distribution of MCFA in TAG affects their metabolic, fate, but the magnitude of postprandial lipemia does not seem to be dependent on the positional distribution of MCFA in the ingested fat.  相似文献   

11.
Chopra R  Sambaiah K 《Lipids》2009,44(1):37-46
Lipase-catalyzed interesterification was used to prepare different structured lipids (SL) from rice bran oil (RBO) by replacing some of the fatty acids with α-linolenic acid (ALA) from linseed oil (LSO) and n-3 long chain polyunsaturated fatty acids (PUFA) from cod liver oil (CLO). In one SL, the ALA content was 20% whereas in another the long chain n-3 PUFA content was 10%. Most of the n-3 PUFA were incorporated into the sn-1 and sn-3 positions of triacylglycerol. The influence of SL with RBO rich in ALA and EPA + DHA was studied on various lipid parameters in experimental animals. Rats fed RBO showed a decrease in total serum cholesterol by 10% when compared to groundnut oil (GNO). Similarly structured lipids with CLO and LSO significantly decreased total serum cholesterol by 19 and 22% respectively compared to rice bran oil. The serum TAGs level of rats fed SLs and blended oils were also significantly decreased by 14 and 17% respectively compared to RBO. Feeding of an n-3 PUFA rich diet resulted in the accumulation of long chain n-3 PUFA in various tissues and a reduction in the long chain n-6 PUFA. These studies indicate that the incorporation of ALA and EPA + DHA into RBO can offer health benefits.  相似文献   

12.
Human milk and infant formula containing coconut/soy oil were infused into the duodenum of rats to determine the incorporation of capric, lauric, myristic and palmitic acids into lymphatic triacylglycerol (TAG). The proportion of capric and lauric acids in the lymphatic TAG reflected the fatty acid composition of the diet. Based on positional analysis, it appears that more than 50% of the capric and lauric acids could have been absorbed from the intestine assn-2 monoacylglycerols. In the rats fed human milk, 50% of palmitic acid in lymphatic TAG was in thesn-2 position. Because of the nonrandom distribution of palmitic acid in the lymphatic TAG, the nonspecific lipase in human milk, i.e., bile salt-stimulated lipase, did not appear to be a factor in milk lipid digestion.  相似文献   

13.
The regio-isomeric distribution of the omega-3 polyunsaturated fatty acids (PUFA) cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in the triacylglycerols (TAG) of anchovy/sardine fish oil was determined by 13C nuclear magnetic resonance (NMR) analysis under quantitative conditions. From the measurements of sn-1,3 and sn-2 carbonyl peak areas it was established that EPA was mainly located in the sn-1,3 positions, whereas DHA primarily occupied the sn-2 position. Reconstituted TAG prepared by Candida antarctica lipase-B (CALB) glycerolysis of the ethyl ester (EE) or the free fatty acid (FFA) forms of anchovy/sardine fish oil, displayed a different pattern: EPA was equally distributed, while DHA was preferentially attached to the sn-1,3 positions. TAG concentrates of varying EPA and DHA molar fractions were prepared by CALB-catalyzed glycerolysis of the corresponding EE and FFA. 13C-NMR analysis of the purified products revealed a lack of CALB regioselectivity for EPA and a slight sn-1,3 regioselectivity for DHA. Since this pattern was observed in all cases of this study, it was concluded that the lipase regioselectivity during TAG synthesis is independent of both the acyl donor type (carboxylic acid or ester) and the fatty acid content of the oil substrate.  相似文献   

14.
Senanayake SP  Shahidi F 《Lipids》2002,37(8):803-810
Stereospecific analysis was carried out to establish positional distribution of FA in the TAG of DHA, EPA, and (EPA+DHA)-enriched oils. In this study, TAG of enzymatically modified oils were purified using a silicic acid column. The TAG were then subjected to positional distribution analysis using a modified procedure involving reductive cleavage with Grignard reagent. The results showed that in DHA-enriched borage oil (BO), DHA was randomly distributed over the three positions of TAG, whereas γ-linolenic acid (GLA) was mainly esterified at the sn-2 and-3 positions. In DHA-enriched evening primrose oil (EPO), however, DHA and GLA were concentrated in the sn-2 position. In EPA-enriched BO, EPA was randomly distributed over the three positions of TAG, similar to that observed for DHA. In EPA-enriched EPO, however, this FA was mainly located at the primary positions (sn-1 and sn-3) of TAG. In both oils, GLA was preferentially esterified at the sn-2 position. In (EPA+DHA)-enriched BO, EPA and DHA were mainly esterified at the sn-1 and -3 positions of TAG, whereas GLA was mainly located at the sn-2 position. In (EPA+DHA)-enriched EPO, GLA was mainly located at the sn-2 and-3 positions; EPA was preferentially esterified at the sn-1 and-3 positions, and DHA was found mainly at the sn-3 position.  相似文献   

15.
Preparation of n-3 polyunsaturated fatty acid (PUFA) concentrates from seal blubber oil (SBO) and menhaden oil (MHO) in the form of acylglycerols was carried out by hydrolysis with a number of commercial microbial lipases. The lipases tested were Aspergillus niger, Candida cylindracea (CC), Chromobacterium viscosum, Geotrichum candidum, Mucor miehei, Pseudomonas sp., Rhizopus oryzae, and Rhizopus niveus. After lipase-assisted hydrolysis of oils, free fatty acids were removed, and fatty acid composition of the mixture containing mono-, di-, and triacylglycerols was determined. All lipases were effective in increasing the n-3 PUFA content of the remaining acylglycerols of both SBO and MHO. The highest concentration of n-3 PUFA was provided by CC lipase; 43.5% in SBO [9.75% eicosapentaenoic acid (EPA), 8.61% docosapentaenoic acid (DPA), and 24.0% docosahexaenoic acid (DHA)] and 44.1% in MHO (18.5% EPA, 3.62% DPA, and 17.3% DHA) after 40 h of hydrolysis. Thus, CC lipase appears to be most suitable for preparation of n-3 PUFA in the acylglycerol form from marine oils.  相似文献   

16.
Carvajal O  Nakayama M  Kishi T  Sato M  Ikeda I  Sugano M  Imaizumi K 《Lipids》2000,35(12):1345-1352
The present study was carried out to examine if the positional distribution of medium-chain fatty acid (MCF) in dietary synthetic fat influences lymphatic transport of dietary fat and the chemical composition of chylomicrons in rats with permanent cannulation of thoracic duct. Four types of synthetic triacylglycerol were prepared: (i) sn-1(3) MCF-sn 2 linoleic acid, (ii) interesterified sn-1(3) MCF-sn 2 linoleic acid, (iii) sn-2 MCF-sn-1(3) linoleic acid, and (iv) interesterified sn-2 MCF-sn-1(3) linoleic acid. A purified diet composed of equal amounts of the synthetic fat and cocoa butter was given to rats with permanent lymph duct cannulation. The positional distribution of MCF in the dietary fat had no significant effect on the lymph flow, triacylglycerol output, phospholipid output, lipid composition of chylomicrons, or the particle size. The positional distribution of MCF in the synthetic triacylglycerol was maintained in the chylomicron triacylglycerol. These results showed that MCF in the dietary triacylglycerol is transported into lymphatics and the positional distribution is well preserved in chylomicron triacylglycerol.  相似文献   

17.
The objective of the study was to determine the fatty acid composition ofOnosmodium hispidissimum Mack. seed oil and the stereospecific distribution of γ-linolenic and stearidonic acids in the seed oil triglycerides. The seed oil contained about 20% γ-linolenic acid and about 8% stearidonic acid. About 90% of both γ-linolenic acid and stearidonic acids were esterified to thesn-2 andsn-3 positions. This paper is NRCC No. 36484.  相似文献   

18.
The pattern of accumulation of triacylglycerols, their fatty acid compositions and the positional distribution of the fatty acids at thesn-2- andsn-1,3-positions of the triacylglycerol molecules at progressive stages of oil palm fruit development were determined. There was an exponential rate of increase of triacylglycerols and their fatty acids toward the end of fruit development. The fatty acid composition of the triacylglycerols in the early stages of development, prior to active accumulation, was more or less similar, but differed appreciably from the later stages, and the transition of fatty acid composition toward that of normal palm oil occurred at around 16 wk after anthesis (WAA) and stabilized at 20 WAA. All fatty acids increased in terms of absolute quantity. There was an overall consistency in fatty acid positional distribution, irrespective of development stage. More saturated fatty acids were found to be esterified at thesn-1,3-positions and more unsaturated fatty acids at thesn-2-position of triacylglycerol. Higher rate of incorporation of 16:0 at the 1,3-positions during the active phase of triacylglycerol synthesis was observed, while 18:1 acid exhibited a reverse trend.  相似文献   

19.
Triglycerides of mango seed kernel fat contain, depending on the variety, 32.4–44.0% of stearic acid and 43.7–54.5% of oleic acid. Palmitic and linoleic acids represent, respectively, 5.9–9.1% and 3.6–6.7% of the fatty acids. The triglycerides also contain minor amounts of arachidic and linolenic acids. Palmitic, stearic and arachidic acids were almost exclusively distributed among thesn-1-andsn-3-positions. Oleic acid represented 85–89% of the fatty acids at thesn-2-position. Oleic acid at thesn-1- andsn-3-positions showed a preference for thesn-1-position. Linoleic acid was mainly esterified at thesn-2-position. The amounts of saturated fatty acids, i.e., palmitic and stearic acids, and of oleic acid, at thesn-1- and sn-3-positions, were linearly related to their respective contents in the total triglycerides.  相似文献   

20.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were distributed mainly in the sn-1,3 positions of seal oil triglyceride and in the sn-2 position of squid oil triglyceride. Seal oil-rich or squid oil-rich fats having constant saturated/monounsaturated/polyunsaturated fatty acid (PUFA) and n−6/n−3 PUFA ratios were fed to exogenously hypercholesterolemic rats for 160 d. The control fat contained linoleic acid as the sole PUFA. Before starting the experimental diets, rats were orally treated with high doses of vitamin D for 4 d to accelerate atherogenesis. The percentage of arachidonic acid in phosphatidylcholine and phosphatidylethanolamine of liver, platelets, and aorta was lower in the marine oil groups than in the control group, seal oil being more effective than squid oil. Maximal platelet aggregation induced by collagen was significantly lower both marine oil groups. Platelet thromboxane (TX) A2 production induced by collagen or thrombin was markedly reduced by feeding seal or squid oils, the reduction being more pronounced in the seal oil than in the squid oil group. Aortic prostacyclin (PGI2) production was the same among the three groups. The ratio of the productions of aortic PGI2 and platelet TXA2 was significantly higher in the seal oil than in the control group. Although there was no difference in intimal thickness among the three groups, the aortic cholesterol content was significantly lower in the marine oil groups than in the control group. These results showed that the main effects in rats of the different intramolecular distributions of EPA and DHA in dietary fats were on arachidonic acid content in tissue phospholipids and on platelet TXA2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号