首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which ω3 fatty acids lower plasma triacylglycerol levels was investigated. Rats were fed fish oil, olive oil (10% fat by weight) or a nonpurified diet 4% fat by weight) for 15 days. Lipoprotein lipase was inhibited by intra-arterial administration of Triton WR 1339 to estimate hepatic triacylglycerol output. Rats fed the olive oil diet showed a higher rate of triacylglycerol formation than rats fed the ω3 fatty acid diet or the low-fat diet. All three groups showed identical rates of removal from plasma of intraarterially administered artificial chylomicrons that had simultaneously been labeled with cholesteryl [1-14C]oleate and [9,10(n)-3H]triolein. Liver radioactivity and total fat content were lowest in rats fed the fish oil diet, indicating that ω3 fatty acids were preferentially metabolized in liver. Chylomicrons obtained from donor rats fed either fish oil containg [14C]cholesterol or olive oil containing [3H]cholesterol were removed at similar rates when infused together intraarterially into recipient animals. A slower formation of plasma very low density lipoprotein triacylglycerols in rats fed fish oil is probably due to a faster rate of oxidation of the fatty acid chains in the liver resulting in decreased plasma triacylglycerol concentrations.  相似文献   

2.
We investigated the influence of dietary fatty acid profile and triacylglycerol structure on the fatty acid profile and triacylglycerol structure of milk lipids in two generations of rats. Three groups of rats received diets containing 20% fat of which approximately 20% was n-3 fatty acids located in different positions of the triacylglycerol: a fish oil-based diet [docosahexaenoic acid (22:6n-3) predominantly in thesn-2 position], a seal oil-based diet (22:6n-3) predominantly in thesn-1/sn-3 position or a plant oil-based diet [α-linolenic acid (18:3n-3) distributed evenly between the three positions]. This design allowed us to investigate (i) the effect of the triacylglycerol structure of the dietary fat; (ii) the effect of receiving the n-3 fatty acids as long-chain derivatives or as the precursor, 18:3n-3; and (iii) the long-term effects over two generations. The fatty acid profiles of the milk lipids largely reflected the diets, but in the second generation, the level of medium-chain fatty acids was higher (P<0.05) in the milk from rats fed the fish oil diet (24%) compared with the other dietary groups (15 and 18%). This suggests an increased endogenous synthesis of fatty acids in the mammary glands of the fish oil-fed rats. The levels of long-chain n-3 fatty acids in milk were higher (P<0.05) in rats fed maire n-3 fatty acids in milk were higher (P<0.05) in rats fed marie oils (8–12%) compared with rats fed vegetable oil (1%) in both generations. The level of long-chain n-3 fatty acids was significantly higher in the milk from the fish oil-fed rats (12.3%) compared to the seal-oil fed rats (8.0%) in the first generation, but not in the second generation (8.9 vs. 9.1%). The general structure of milk triacylglycerols was maintained in the three experimental groups with 16:0 acylated in thesn-2 position and 18:1 in thesn-1/sn-3 positions. The triacylglycerol structure of mammalian milk appears to be conserved even during extreme dietary manipulation over two generations and an extensive enrichment with long-chain n-3 polyunsaturated fatty acids requires their presence in the diet.  相似文献   

3.
This study examines the incorporation of highly unsaturated n−3 fatty acids (HUFA) into triacylglycerols (TAG) of brown adipose tissue (BAT), and their effect on the positional distribution of saturated (SFA) and of unsaturated (UFA) 16- or 18-carbon fatty acids. To this end, rats were fed a fish oil diet for up to four weeks. The stereospecific analysis of TAG was based on generation ofsn-1,2- andsn-2,3-acylglycerols by Grignard degradation, followed by synthesis of phosphatidic acid and specific hydrolysis with phospholipase A2. From the end of the first week of fish oil feeding, a steady-state in the fatty acid composition of TAG in BAT was reached. HUFA concentration increased 30-fold, mainly at the expense of n−9 UFA and of SFA. The amount of SFA decreased selectively at position 3, where these fatty acids were progressively replaced by n−3 HUFA. By contrast, the amount of UFA decreased at all positions, and their positional distribution was not affected. About 60% of HUFA was incorporated at position 3. Nearly twice as much 22∶6n−3 was incorporated into TAG than had been previously observed in white adipose tissue (WAT) [Leray, C., Raclot, T., and Groscolas, R. (1993)Lipids 28, 279–284]. At the steady-state, the distribution of HUFA was characterized by high proportions of 22∶6n−3 and 20∶5n−3 in position 3. Moreover, in each position of TAG, a steady level was reached rapidly (within 1 wk). It is concluded that, during fish-oil feeding, fatty acids in TAG of BAT show characteristic time-course changes that lead to a characteristic composition and a tissue-specific positional distribution. This suggests that adipose tissue has its own specificity in controlling the build-up of TAG stores, which is likely to be regulated by the specificity of acylating enzymes as well as molecular rearrangements.  相似文献   

4.
Thirteen synthetic triacylglycerols (TAG) containing eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were oxidized in the presence of 2,2′-azobis(2,4-dimethyl-valeronitrile) (AMVN) and 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) as aqueous and nonaqueous radical initiators to investigate the influence of TAG structure and oxidation system on the oxidative stability of TAG that contain highly unsaturated fatty acids (HUFA). A 2:1 (mol/mol) mixture of trieicosapentaenoylglycerol and tripalmitoylglycerol was most susceptible to the AMVN-initiated oxidation among three types of TAG that contained EPA and palmitic acid (2:1, mol/mol). Compared with 1,2 (or 2,3)-dieicosapentaenoyl-3(or 1)-palmitoylglycerol (EEP) and 1,3-dieicosapentaenoyl-2-palmitoylglycerol (EPE), the oxidative rate of EEP was somewhat higher. A similar result was obtained for DHA-containing TAG. The oxidative rate of TAG that contained EPA and palmitic acid (1:2, mol/mol) showed a positive correlation with the amount of EPA in a single TAG molecule. Moreover, in the nonaqueous system, the oxidative rate of EPA-containing TAG was affected by unsaturation and carbon chainlength of constituent fatty acids. In the AAPH-initiated oxidation in the aqueous system, the oxidative rate of TAG with EPA and palmitic acid was higher with the increased quantity of EPA in a single TAG molecule. Also, constituent fatty acids modified the oxidative rate of EPA-containing TAG in an aqueous system. The glycerol position of EPA and DHA also affected the oxidative rate of the TAG. EPA and DHA located at the 1,2 (or 2,3)-position of glycerol were more oxidizable than those at the 1,3-position during AAPH-initiated oxidation. Thus, 1,2(or2,3)-dipalmitoyl-3(or 1)-eicosapentaenoylglycerol was oxidized faster than 1,3-dipalmitoyl-2-eicosapentaenoylglycerol. These observations suggest that the oxidative stability of TAG that contain HUFA could be modulated by the oxidation system and TAG structure.  相似文献   

5.
The present study investigated the metabolic fate of dietary TAG and DAG and also their digestion products in the stomach and small intestine. A diet containing 10% TAG or DAG oil, enriched in 1,3-DAG, was fed to Wistar rats ad libitum for 9 d. After 18 h of fasting, each diet was re-fed ad libitum for 1 h. The weights of the contents of the stomach and small intestine were measured, and the acylglycerol and FFA levels were analyzed by GC at 0, 1, and 4 h after the 1-h re-feeding. The amounts of re-fed diet ingested and the gastric and small intestinal content were not different between the two diet groups. In the TAG diet group, the main products were TAG and DAG, especially 1(3),2-DAG. In addition, 1,3-DAG and 1(3)-MAG were present in the stomach, and the 1,3-DAG levels increased over time after the re-feeding period. In the DAG diet group, the main products in the stomach were DAG, MAG, FFA, and TAG. There were significantly greater amounts of 1,3-DAG, 1(3)-MAG, and FFA in the DAG diet group in the stomach compared with the TAG diet group. The amount of FFA in the stomach relative to the amount of ingested TAG plus DAG in the DAG diet group was higher than that in the TAG diet group. Acylglycerol and FFA levels were considerably lower in the small intestine than in the stomach. These results indicate that, in the stomach, where acyl migration might occur, the digestion products were already different between TAG and DAG oil ingestion, and that DAG might be more readily digested by lingual lipase compared with TAG. Furthermore, almost all of the dietary lipid was absorbed, irrespective of the structure of the acylglycerol present in the small intestine.  相似文献   

6.
It is well known that the consumption of n-3 polyunsaturated fatty acid (PUFA) decreases the plasma triacylglycerol (TAG) level. The technology of elevating the content of n-3 PUFAs in pig meat has already reached a practical level. In this study, the effects of dietary lard containing higher alpha-linolenic acid (LNA) on plasma TAG were compared with those of normal lard in rats. The rats were fed a diet containing either 10% normal lard or a high linolenic lard for 4 weeks. The plasma and liver TAG levels in the high linolenic lard group were significantly lower than those in the normal lard group. The activity of the fatty acid synthase (FAS) of the liver in the high linolenic lard group was significantly lower than that in the normal lard group. The contents of n-3 PUFAs in hepatic total lipid, TAG fraction, and the phospholipids (PLs) fraction increased in the high linolenic lard group. The results indicate that the high linolenic lard suppressed hepatic FAS activity compared with the control lard, resulting in a lower concentration of plasma TAG. These results also suggest that pig meat containing high LNA may be more nourishing than normal pig meat.  相似文献   

7.
Young K. Yeo  Bruce J. Holub 《Lipids》1990,25(12):811-814
The influence of dietary fish oil containing n−3 polyunsaturated fatty acids on the biosynthesis of triacylglycerol relative to total individual phospholipids was studied in rat liverin vivo. The dietary lipid (10% by weight of diet) was either sunflower oil enriched in linoleic acid (SO group) or MaxEPA fish oil/sunflower oil, 9∶1 by weight (FO group) enriched in eicosapentaenoic acid (EPA, 20∶5n−3) plus docosahexaenoic acid (DHA, 22∶6n−3). After a 3-week feeding period, the triacylglycerol content (in μmmol/g liver) was 44% lower in the FO group relative to the SO animals. Thein vivo incorporation of [3H]glycerol into individual hepatic lipids resulted in triacyl-glycerol/total phospholipid radioactivity ratios of 2.1 and 0.9 for the SO and FO groups, respectively. These results indicate an inhibitory effect of dietary EPA/DHA on triacylglycerol relative to phospholipid synthesis from intermediary 1,2-diacylglycerol in rat liverin vivo. This metabolic alteration was accompanied by a substantially lower amount (in μmol/g liver) of arachidonic acid and higher levels of EPA plus DHA in the triacylglycerol, choline glycerophospholipid (CGP), and ethanolamine glycerophospholipid (EGP) of the FO group. A moderately higher labelling of the EGP from [3H]glycerol was observed in the FO as compared to the SO group (as evidenced by CGP/EGP radioactivity ratios of 1.3∶1 and 1.8∶1, respectively). The present study providesin vivo evidence for a dampening effect of dietary fish oil on the synthesis of liver triacylglycerol relative to phospholipid and a moderate alteration ofde novo synthesis of individual phospholipids. Presented in part at the 80th Annual Meeting of the AOCS in Cincinnati, Ohio (May, 1989).  相似文献   

8.
The triacylglycerols of very low density lipoproteins (VLDL) and of chylomicrons were analyzed in the fasting and postabsorptive states from normolipemic subjects and patients with Frederickson's Type II hyperlipoproteinemia, who subsisted on free choice diets, standard diets excluding lard, or were given a breakfast enriched in lard. The VLDL and chylomicrons were obtained by conventional ultracentrifugation, and the triacylglycerols were isolated by thin-layer chromatography (TLC). Representative sn-1,2, 2n-2-3- and sn-1,3-diacylglycerols were generated by partial Grignard degradation of the triacylglycerols and a stereospecific hydrolysis by phospholipase C of the mixed sn-1,2(2,3)-diacyl phosphatidylcholines prepared as intermediates. Representative sn-2-acylglycerols were obtained by hydrolysis with pancreatic lipase. Positional distribution of the fatty acids was established by subtracting in turn the fatty acid composition of the sn-2-position from the fatty acid composition of the sn-1,2- and sn-2,3-diacylglycerols. The molecular association of the fatty acids in the diacylglycerol moieties was determined by gas-liquid chromatography with mass spectrometry (GC/MS) of the tertiary-butyldimethylsilyl (t-BDMS) ethers. The molecular association of the fatty acids in the triacylglycerols was determined by 1-random 2-random 3-random calculation following experimental validation of the distribution. The results confirm a marked asymmetry in the positional distribution of the fatty acids in all triacylglycerol samples, with the palmitic acid predominantly in the sn-1-position, the unsaturated acids about equally divided between the sn-2-and sn-3-positions, and the stearic acid divided about equally between the sn-1- and sn-3-positions. The overall structure of the VLDL and chylomicron triacylglycerols from patients and control subjects was characterized by a noncorrelative distribution of fatty acids under all dietary conditions.  相似文献   

9.
Canola oil triacylglycerols from genetically modified canola lines (InterMountain Canola Co., Cinnaminson, NJ) have been evaluated for their photooxidative and autoxidative stabilities, as influenced by their fatty acid compositions and their triacylglycerol compositions and structures. Purified canola oil triacylglycerols were oxidized in duplicate in fluorescent light at 25°C and in the dark at 60°C under oxygen, and their oxidative deterioration with time was monitored by determining colorimetric peroxide values. Also monitored with time, oxidation products were determined by reversed-phase high-performance liquid chromatography with ultraviolet absorbance detection. Total volatiles, generated by thermal decomposition of the oxidized triacylglycerols, were quantitated by static-head-space gas chromatography. These experimental parameters were statistically correlated with predicted oxidizability, fatty acid composition, position of fatty acids on glycerol carbons and triacylglycerol composition. Oxidative deterioration of canola triacylglycerols correlated negatively with oleic acid composition, with oleic acid content at carbon 2 and with trioleoylglycerol content of the oil. Deterioration was positively correlated with the amount of linolenic acid on nonspecific locations on glycerol carbons 1,2 and 3, the amount of linoleic acid on glycerol carbon 2 and withsn-oleoyllinoleoyllinolenoyl glycerol content. Differences in character or quantity of volatile product and triacylglycerol hydroperoxides were low, whether generated during autoxidation or photooxidation of the canola triacylglycerols. Presented at the joint meeting of the American and Japan Oil Chemists' Societies, April 25–28, 1993, Anaheim, California.  相似文献   

10.
The experimentally determined kinematic viscosities of simple triacylglycerols [trilaurin, trimyristin (MMM), tripalmitin (PPP), tristearin (SSS), triolein (OOO), and trilinolein (LiLiLi) were correlated to a modified Andrade-type equation. The constants for the modified equation were derived for each simple triacylglycerol. The method was also used to estimate the viscosity of mixed triacylglycerols [1,2-dimyristoyl-3-palmitoyl (MMP), 1,2-dioleoyl-3-palmitoyl (OOP), 1,2-dimyristoyl-3-oleoyl (MMO), and 1,2-dipalmitoyl-3-oleoyl (PPO)], binary triacylglycerol mixtures (PPO/OOP, PPP/SSS, and OOO/SSS of different portions), and three types of vegetable oils [refined, bleached, and deodorized palm oil; cocoa butter; and canola oil] by applying modified Kay’s rule utilizing the simple triacylglycerol constants derived earlier. In all cases, the estimated values for liquid viscosity were compared with experimental values determined in this work and with previous work from the literature. When applied to vegetable oils, the method requires knowledge of their triacylglycerol composition. Despite its simplicity, the method gives a reasonable estimate. The method may be used to predict the viscosity of different blends of vegetable oils, and the accuracy is expected to increase when more experimental data on simple triacylglycerols become available.  相似文献   

11.
Although the reduction of serum triacylglycerol concentrations by dietary fish oil is a well-known effect, the exact mechanism of this effect has not been previously studied in human subjects. Therefore, the aim of this study was (i) to examine the effect of short-term fish oil supplementation on blood concentrations of ketone bodies, free fatty acids and triacylglycerol in healthy humans and (ii) to verify whether the observed relationships between these variables would be consistent with reduced lipolysis and/or enhanced hepatic fatty acid oxidation after fish oil supplementation. Twenty subjects (21–23 years, normal liver function tests) were randomly divided into two groups to supplement their usual diet with either 30 g/d of fish oil (n=11) or olive oil (n=9). Venous blood samples were drawn after an overnight fast, before and after 1, 3 and 7 d of fish oil/olive oil supplementation. Blood concentrations of triacylglycerol and free fatty acids decreased consistently after fish oil supplementation; the reduction was already significant after one day of fish oil (P<0.001 for triacylglycerol andP=0.01 for free fatty acids). In contrast, neither of these blood values changed after olive oil supplementation (P>0.10). No significant changes in glucose, insulin or ketone body levels were observed in either group after supplementation. After fish oil, but not after olive oil supplementation, the ratio of blood ketone body levels to free fatty acid levels increased significantly (P<0.05). Furthermore, after fish oil supplementation only, free fatty acid levels were significantly correlated with levels of ketone bodies (day 7 of supplementation: r=0.90,P<0.001) and triacylglycerol (maximum value on day 3: r=0.77,P<0.01). These findings suggest that reduced lipolysis and increased hepatic β-oxidation/ketogenesis may contribute to reduced triacylglycerol levels after ω3 fatty acid supplementation in humans. Turnover studies are needed in order to further quantitate these processes.  相似文献   

12.
Four normal and two individuals with Type IIa hyperlipoproteinemia were placed on the National Heart and Lung Institute Type IIa diet (low cholesterol, smaller than 300 mg/day, high polyunsaturated, low saturated fat diet) for 1 week and on a normal diet the following week. Plasma samples were obtained and the triacylglycerols, phospholipids, and cholesterol contents of plasma and of very low density lipoproteins, low density lipoproteins, and high density lipoproteins determined. Triacyglycerol fatty acid composition was determined and stereospecific analyses of triacglycerols and phosphatidyl cholines performed. Structural determinations were limited to one normal and one Type IIa individual. In normal and Type IIa individuals, chylomicrons contained twice the amount of 18:0 as did the very low density lipoproteins, low density lipoproteins, or high density lipoproteins. The structure of the triacyglycerols from the very low density lipoproteins and low density lipoproteins was asymmetric with at least 50M% 16:0 in the sn-1 position and mostly 18:1 in positions sn-2 and 3. There was a marked difference in the distribution of 18:2 in low density lipoproteins of the normal and Type IIa individuals. The control contained equal amounts of 18:2 in the sn-1 and sn-3 positions, whereas IIa low density lipoprotein was asymmetric with 26% of the 18:2 in position sn-1 and 3% in the sn-3 position. Very low density lipoprotein was asymmetric with regard to 18:2 in control and IIa samples with an average of 5% of the 18:2 in position sn-1 and 40% in position sn-3. The phosphatidyl cholines contained predominantly 16:0 and 18:0 in position sn-1, whereas the acids in position sn-2 were unsaturated with very little difference between lipoprotein classes. Neither the short dietary periods nor source of plasma affected the structure of the phosphatidyl cholines.  相似文献   

13.
The growth rate of a human mammary carcinoma, MX-1, was significantly reduced in athymic “nude” mice fed fish oil. Tumors from the fish oil-fed animals also showed a greater sensitivity to two anti-neoplastic agents, mitomycin C and doxorubicin. Mitochondria were isolated from control livers, host livers and tumors from fish oil-and corn oil-fed animals, and increased levels of 20∶5n−3 and 22∶6n−3 were found in mitochondrial lipids in all three tissues from the fish oil-fed animals. To investigate the effect of dietary n−3 fatty acids on lipid metabolism, the activity of the acyl-CoA:carnitine acyltransferase and three acyl-CoA desaturases were measured. Carnitine acyltransferase activity toward all four acyl-CoA substrates tested was markedly increased in mitochondria from liver by feeding fish oil. In mitochondria from tumors, feeding fish oil resulted in an increased activity toward only 18∶3n−3. These data suggest that fish oil may induce an increase in the oxidation of fatty acids. The Δ9-desaturase activity was decreased in microsomes from liver and tumor from fish oil-fed animals. However, both the Δ6 and Δ5 desaturases were increased in tumor and in control liver as a result of feeding fish oil. The Δ5 desaturase was not altered in microsomes from the host animals. The effect of fish oil on the Δ5 and Δ6 desaturases may involve alterations to metabolism of specific polyunsaturated fatty acids especially in the tumor tissue.  相似文献   

14.
Carvajal O  Nakayama M  Kishi T  Sato M  Ikeda I  Sugano M  Imaizumi K 《Lipids》2000,35(12):1345-1352
The present study was carried out to examine if the positional distribution of medium-chain fatty acid (MCF) in dietary synthetic fat influences lymphatic transport of dietary fat and the chemical composition of chylomicrons in rats with permanent cannulation of thoracic duct. Four types of synthetic triacylglycerol were prepared: (i) sn-1(3) MCF-sn 2 linoleic acid, (ii) interesterified sn-1(3) MCF-sn 2 linoleic acid, (iii) sn-2 MCF-sn-1(3) linoleic acid, and (iv) interesterified sn-2 MCF-sn-1(3) linoleic acid. A purified diet composed of equal amounts of the synthetic fat and cocoa butter was given to rats with permanent lymph duct cannulation. The positional distribution of MCF in the dietary fat had no significant effect on the lymph flow, triacylglycerol output, phospholipid output, lipid composition of chylomicrons, or the particle size. The positional distribution of MCF in the synthetic triacylglycerol was maintained in the chylomicron triacylglycerol. These results showed that MCF in the dietary triacylglycerol is transported into lymphatics and the positional distribution is well preserved in chylomicron triacylglycerol.  相似文献   

15.
The effect of dietary fish oil on serum lipid levels was studied by comparing it with dietary corn oil in Donryu rats subcutaneously implanted with an ascites hepatoma cell line (AH109A). The hepatoma-bearing rats exhibited hyperlipidemia charactarized by a rise in both serum cholesterol and triglyceride levels. Increased cholesterogenesis in the host liver and decrease steroid excretion into feces are suggested to be responsible for the hepatoma-induced hypercholesterolemia, and increased fatty acid mobilization from peripheral adipose tissues and decreased triglyceride clearance from the blood circulation are considered causes for the hepatoma-induced hypertriglyceridemia. Dietary fish oil reduced the hyperfipidemia in these animals, suppressed the hepatoma-induced increase in hepatic cholesterogenesis and fatty acid mobilization from adipose tissue. Dietary fish oil also tended to increase fatty acid oxidation in the liver. Such diverse effects of fish oil may lead to the reduction of the hepatoma-induced hyperlipidemia. These results suggest that studies on dietary fish oil may be warranted in patients with cancer-related hyperlipidemia.  相似文献   

16.
17.
18.
Human serum lipid and lipoprotein concentrations and compositions were compared in ten healthy middle-aged men consuming phospholipids from egg or from soybean or triacylglycerol mixtures with fatty acid compositions similar to those of the phospholipids. All subjects followed each of the four treatments: egg phospholipids (EP), soybean phospholipids (SP), an oil of fatty acid composition similar to that of EP, and an oil similar in fatty acid composition to SP for six weeks with “wash-out” periods of similar duration between treatment periods. The phospholipids, 15 g/d, and the oils, 12 g/d, which contained approximately equivalent quantities of fatty acids were provided to the subjects in gelatin capsules and were taken before meals. Diet intake was monitored by three-day food records. Serum lipoproteins (Lp) were separated by ultracentrifugation into very low density lipoproteins, low density lipoproteins (LDL), high density lipoproteins (HDL)2 and HDL3. Lp fractions and whole serum were analyzed for triacylglycerols, cholesterol (CH), phospholipids (PL), and protein. HDL cholesterol was determined in while serum. Cholesteryl esters were determined in some Lp fractions. Lipid compositions of Lp were expressed in mmol/g protein. Apoprotein B was measured in whole serum and in LDL; apoprotein A-I in whole serum and in HDL3. In whole serum, CH and PL were significantly lower after the SP compared to EP treatment periods. CH, but not PL, was lower after SPTG compared to EP. CH in HDL2 was significantly higher after SP compared to SPTG. Also, PL in HDL2 were significantly higher after SP compared to all other treatments and to baseline. Although human serum lipid responses to dietary phospholipids were generally the same as responses to ingested oils of comparable fatty acid composition, the data suggest the possibility that SP selectively increase HDL2 cholesterol and phospholipids.  相似文献   

19.
Cholesterol oxidation products (oxysterols) induce macrophage lipid loading and accumulate in early arterial fatty streaks. The origin of lesion oxysterols has not been elucidated. The absorption of oxysterols from the diet and transport to the arterial wall by postprandial lipoprotein remnants may be a significant source. This study aimed to investigated the extent of oxysterol absorption and the effect on chylomicron composition. Cholesterol was heat-treated, causing 30% oxidation; the major oxidation products were 7β-hydroxycholesterol, 7-ketocholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Conscious lymph-cannulated rats were given a bolus gastric infusion of 50 mg oxidized cholesterol or 50 mg purified cholesterol in a vehicle of triglyceride. In the rats given the oxidized cholesterol, 6% of the oxysterol load was absorbed and incorporated into lymph chylomicrons. Rats given pure cholesterol had no increase in oxysterols above baseline levels. The incorporation of oxysterols into lymph chylomicrons differed over time with 7β-hydroxycholesterol, having peak absorption at 3 h, followed by 7-ketocholesterol at 4 h and 5α,6α-epoxycholesterol at 5 h. The absorption of oxysterols in animals given the oxidized cholesterol gastric infusate was associated with lymph chylomicron compositional changes at 2–4 h. The oxidized cholesterol-treated group has a twofold increase in the cholesterol (890±84 μg vs. 440±83 μg at 3 h) and triglyceride content (19.76±3.4 μg vs. 8.49±3.8 μg at 3 h). This led to a doubling of chylomicron size over this postprandial period, with particles having a mean diameter of 294 nm in the oxidized cholesterol-treated animals, compared to 179 nm in the purified cholesterol group. In conclusion, dietary oxysterols appear to influence postprandial lipoprotein particle size and composition. These changes may have effects on the clearance of chylomicrons from plasma, arterial delivery of oxysterols, and possible deposition in arterial lesions.  相似文献   

20.
Vine DF  Croft KD  Beilin LJ  Mamo JC 《Lipids》2002,37(5):455-462
Oxidized cholesterols in the diet have been shown to exacerbate arterial cholesterol deposition and the development of atherosclerosis in animal models. Dietary oxidized cholesterols are absorbed through the intestine and incorporated into lymph chylomicrons. The aim of this study was to investigate the effect of oxidized cholesterols on the metabolism of nascent chylomicrons in vivo. It was shown that oxidized cholesterols markedly delay the clearance of chylomicrons from plasma compared to rats given TG alone. However, there was no difference in the clearance of chylomicrons containing oxidized cholesterols vs. purified cholesterol, although the presence of oxysterols did appear to exacerbate the removal of these particles from circulation. The impaired clearance of chylomicrons containing oxidized cholesterols was not due to impaired lipolysis and slower conversion to the remnant form. Moreover, the incorporation of oxidized cholesterols did not alter the hepatic or splenic uptake of chylomicrons compared to chylomicrons isolated from rats given purified cholesterol or TG alone. Collectively, the results of this study suggest that the exacerbated delay in clearance of chylomicron remnants enriched with oxysterols may be due to impaired uptake by tissues other than the liver and spleen. Apolipoprotein (apo) analysis showed that oxysterol incorporation reduced the apoE content and altered the apoC phenotype of chylomicrons, which may have an impact on the removal of chylomicron remnants from plasma. In conclusion, dietary oxysterols appear to have the potential to adversely affect chylomicron metabolism. Therefore, further investigations in humans are required to determine whether dietary oxidized cholesterols found in cholesterol-rich processed foods delay the clearance of postprandial remnants, which may contribute to and exacerbate the development of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号