首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric cascade discharges with pulsed discharge and radio frequency(RF)discharge were experimentally investigated by the temporal evolution of discharge spatial profile and intensity.The indium tin oxide(ITO)coated glass was employed as the transparent electrode to capture the discharge distribution above the electrode surface.It is demonstrated that in the pulsed discharge with dielectric barrier,the first discharge at the rising edge of pulse voltage is uniformly ignited and then forms an expanding plasma ring on the ITO electrode surface,which shrinks to the same diameter as that of bare stainless steel electrode with the generation of second discharge at the falling edge of pulse voltage.The discharge profiles along the electrode surface and discharge gap of the successive RF discharge are dependent on the intensity and spatial distribution of residual plasma species generated by the pulsed discharge,which is determined by the time interval between the pulsed discharge and RF discharge.It is demonstrated that the residual plasma species before the RF discharge ignition help to achieve the stable operation of RF discharge with elevated intensity.  相似文献   

2.
In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical properties and concentration of reactive oxygen and nitrogen species(RONS)in plasma-activated medium(PAM)were characterized to explore their chemical activity.Furthermore,we investigated the inactivation effect of air plasma jet on tumour cells and their corresponding inactivation mechanism.The results show that the tube diameter plays an important role in sustaining the voltage of the air plasma jet,and the gas flow rate affects the jet length and discharge intensity.Additionally,the air plasma jet discharge displays two modes,namely,ozone and nitrogen oxide modes at high and low gas flow rates,respectively.Increasing the voltage increases the concentration of reactive species and the length of discharge.By evaluating the viability of A549 cells under different parameters,the optimal treatment conditions were determined to be a quartz tube diameter of 4 mm,gas flow rate of 0.5 SLM,and voltage of 18 kV.Furthermore,an air plasma jet under the optimized conditions effectively enhanced the chemical activity in PAM and produced more aqueous RONS.The air plasma jet induced significant cytotoxicity in A549 cancer cells after plasma treatment.H2O2 and NO2 are regarded as key factors in promoting cell inactivation.The present study demonstrates the potential use of tumour cell therapy by atmospheric air PAM,which aids a better understanding of plasma liquid chemistry.  相似文献   

3.
Precise control of the discharge in space and time is of great significance for better applications of discharge plasma. Here, we used a femtosecond laser filament to trigger and guide a high-voltage DC pulse discharge to achieve spatiotemporal control of the discharge plasma. In space, the discharge plasma is distributed strictly along the channel generated by the femtosecond laser filament. The breakdown voltage threshold is reduced, and the discharge length is extended. In time, the electrical parameters such as the electrode voltage and the electrode gap affect discharge delay time and jitter. By optimizing the parameters, we can achieve sub-nanosecond jitter of the discharge. Based on the spatiotemporal control of the discharge, we applied filament-triggered discharge for one-dimensional composition measurements of the gas flow field. Besides, the technique shows great potential in studying the spatiotemporal evolution of discharge plasma.  相似文献   

4.
A direct-current air plasma jet operated underwater presents three stable modes including an intermittently-pulsed discharge, a periodically-pulsed discharge and a continuous discharge with increasing the power voltage. The three discharge modes have different appearances for the plasma plumes. Moreover, gap voltage-current characteristics indicate that the continuous discharge is in a normal glow regime. Spectral lines from reactive species(OH, N_2, N_2~+, H_α,and O) have been revealed in the emission spectrum of the plasma jet operated underwater.Spectral intensities emitted from OH radical and oxygen atom increase with increasing the power voltage or the gas flow rate, indicating that reactive species are abundant. These reactive species cause the degradation of the methylene blue dye in solution. Effects of the experimental parameters such as the power voltage, the gas flow rate and the treatment time are investigated on the degradation efficiency. Results indicate that the degradation efficiency increases with increasing the power voltage, the gas flow rate or the treatment time. Compared with degradation in the intermittently-pulsed mode or the periodically-pulsed one, it is more efficient in the continuous mode, reaching 98% after 21 min treatment.  相似文献   

5.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas-liquid discharge in atmospheric N2 with a trumpet-shaped quartz tube.The current-voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,and NO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1 of gas flow rate.The absorbance intensities of NO2 and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N2(C),OH(A),and O(3p)),nitrogen oxides (NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,and NO3-compared with both unipolar positive and negative discharges.  相似文献   

6.
In this study, we computationally examined the dynamics of dielectric barrier discharge in hydrogen sulfide. The simulations were performed with a 1d3v particle-in-cell/Monte Carlo collision model in which a parallel-plate electrode geometry with dielectrics was used. Particle recombination process is represented in the model. The discharge mode was found to be initially Townsend discharge developing from the cathode to the anode, and at the peak of the current, a more stable glow discharge develops from the anode to the cathode. A higher applied voltage results in sufficient secondary electrons to trigger a second current peak, and then the current amplitude increases. As the frequency is increased, it leads to the advance of the phase and an increase in the amplitude of the current peak. A higher dielectric permittivity also makes the discharge occur earlier and more violently in the gap.  相似文献   

7.
In order to solve the problem of the difficulty of igniting and steadily propagating a continuous rotating detonation engine when using liquid hydrocarbon fuel, an experiment was carried out using a dielectric barrier discharge excited by a nanosecond power supply to crack n-decane, the single alternative fuel to aviation kerosene, in a pre-heated argon environment. By changing the voltages and the discharge frequencies, the concentrations of different components as well as a number of different species were acquired. The generating mechanism of olefins and alkanes together with their competition mechanism were acquired. The influence of the voltage on isomer products was also analyzed. The results demonstrate that the bond energy distribution and the species generating condition are the main factors affecting the formation of the products. With the increasing of voltage and discharge frequency, small molecule olefins, large molecular olefins, large molecular alkanes, small molecular alkanes, and hydrogen were detected, and in turn, their concentrations were also increased except for ethylene; what is more, when the voltage was increased over 8.5 kV, the n-butene converted to trans-butene, and the n-pentene converted to isoamylene.  相似文献   

8.
In this paper,unipolar pulse (including positive pulse and negative pulse) and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N_2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H_2O_2,NO_2~-,andNO_3~-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species (OH(A),and O(3p)) in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min~(-1)of gas flow rate.The absorbance intensities of NO_2and N_2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species (N_2(C),OH(A),and O(3p)),nitrogen oxides (NO_2,NO,and N_2O),and higher production of aqueous H_2O_2,NO_2~-,andNO_3~-compared with both unipolar positive and negative discharges.  相似文献   

9.
A double-chamber gas-liquid phase DBD reactor (GLDR), consisting of a gas-phase discharge chamber and a gas-liquid discharge chamber in series, was designed to enhance the degradation of benzene and the emission of NOx. The performance of the GLDR on discharge characteristics, reactive species production and benzene degradation was compared to that of the single-chamber gas phase DBD reactor (GPDR). The effects of discharge gap, applied voltage, initial benzene concentration, gas flow rate and solution conductivity on the degradation and energy yield of benzene in the GLDR were investigated. The GLDR presents a higher discharge power, higher benzene degradation and higher energy yield than that of the GPDR. NO2 emission was remarkably inhibited in the GLDR, possibly due to the dissolution of NO2 in water. The benzene degradation efficiency increased with the applied voltage, but decreased with the initial concentration, gas flow rate, and gas discharge gap, while the solution conductivity presented less influence on benzene degradation. The benzene degradation efficiency and the energy yield reached 61.11% and 1.45 g kWh–1 at 4 mm total gas discharge gap, 15 kV applied voltage, 200 ppm benzene concentration, 0.2 L min−1 gas flow rate and 721 μS cm−1 water conductivity. The intermediates and byproducts during benzene degradation were detected by FT-IR, GC-MS and LC-MS primarily, and phenols, COx, and other aromatic substitutes, O3, NOx, etc, were determined as the main intermediates. According to these detected byproducts, a possible benzene degradation mechanism was proposed.  相似文献   

10.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

11.
In this paper,a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions.The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis(FEA) method,and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of efective discharge range(EDR) on the plate were also investigated and discussed.The simulation results show that the probe with a wide tip will cause a larger efective discharge range on the plate;the field strength in the gap is notably higher than that induced by the sharp tip probe;the efective discharge range will increase linearly with the rise of excitation voltage,and decrease nonlinearly with the rise of gap length.In addition,probe dimension,especially the width/height ratio,afects the efective discharge range in diferent manners.With the width/height ratio rising from 1:1 to 1:10,the efective discharge range will maintain stable when the excitation voltage is around 50 V.This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower.Furthermore,when the gap length is 5 nm and the excitation voltage is below 20 V,the diameter of EDR in our simulation is about 150 nm,which is consistent with the experiment results reported by other research groups.Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.  相似文献   

12.
An atmospheric pressure plasma jet (APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrodepositions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge (DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature (EET) for the three grounded electrode positions.  相似文献   

13.
Plasma in the discharge channel of a pulsed plasma thruster (PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail. The computational results of the electron number density, which is in the order of 1023 m−3, show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.  相似文献   

14.
The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.  相似文献   

15.
Circle points discharge tube current controller is a new type device to limit the output of high voltage discharge current. Circle points uniform corona discharge to form air ionization current in the discharge tube. On the outside, even if the discharge electrode is spark discharging or the two discharge electrodes are short circuited, the air ionization current in the tube remains within a stable range, and there is no spark discharge. In this case, when the discharge current only increases slightly, the requirement to limited current is obtained. By installing the controller at a discharge pole with a small power but high voltage supply, we can realize the shift between the continuous spark line discharge and corona discharge. This provides a new simple device for spark discharge research and is a supplement to the Townsend discharge experiment.  相似文献   

16.
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.  相似文献   

17.
Non-thermal plasma (NTP) devices produce excited and radical species that have higher energy levels than their ground state and are utilized for various applications.There are various types of NTP devices,with dielectric barrier discharge (DBD) reactors being widely used.These DBD devices vary in geometrical configuration and operating parameters,making a comparison of their performance in terms of discharge power characteristics difficult.Therefore,this study proposes a dimensionless parameter that is related to the geometrical features,and is a function of the discharge power with respect to the frequency,voltage,and capacitance of a DBD.The dimensionless parameter,in the form of a ratio of the discharge energy per cycle to the gap capacitive energy,will be useful for engineers and designers to compare the energy characteristics of devices systematically,and could also be used for scaling up DBD devices.From the results in this experiment and from the literature,different DBD devices are categorized into three separate groups according to different levels of the energy ratio.The larger DBD devices have lower energy ratios due to their lower estimated surface discharge areas and capacitive reactance.Therefore,the devices can be categorized according to the energy ratio due to the effects of the geometrical features of the DBD devices,since it affects the surface discharge area and capacitance of the DBD.The DBD devices are also categorized into three separate groups using the Kriegseis factor,but the categorization is different from that of the energy ratio.  相似文献   

18.
A high-speed charge-coupled device camera was used to capture images of the plume and acceleration channel of a Hall effect thruster during ignition at different discharge voltages. To better understand the influence of changes in the discharge voltage on the plasma parameters during thruster ignition, a particle-in-cell numerical model was used to calculate the distribution characteristics of the ion density and electric potential at different ignition moments under different discharge voltages. The results show that when the discharge voltage is high, the ion densities in the plume and acceleration channel are significantly higher at the initial phase of thruster ignition; with the gradual strengthening of the ignition process, the propellant avalanche ionization during thruster ignition occurs earlier and the pulse current peak increases. The main reason for these phenomena is that the change in the discharge voltage results in different energy acquisitions of the emitted electrons entering the thruster channel.  相似文献   

19.
The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104ms−1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.  相似文献   

20.
A multi-electrode array is commonly applied in a plasma sparker to generate stable acoustic pulses.In this paper,the effects of the electrode configuration on the performance of a plasma sparker have been investigated.In terms of the load electrical characteristics,the electrode radius and distance have negligible influence on the electric characteristics,whereas a larger electrode number results in a smaller voltage and a larger current but has little effect on the load energy.Regarding the acoustic characteristics,both the expansion and collapse pulses can be increased by decreasing the electrode tip radius.the influence of the electrode number and electrode gap distance on the amplitude of the expansion pulse was found to be negligible.And the amplitude of the collapse pulse decreases significantly with increasing electrode number.Increasing the electrode number decreases the energy efficiency for intense bubble interactions,thus,a small electrode tip radius and a small electrode number are preferred for the design of a plasma sparker if the total discharge energy is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号