共查询到20条相似文献,搜索用时 15 毫秒
1.
《等离子体科学和技术》2016,18(3):217-222
In this paper,the dielectric properties of CO_2,CO_2/air,CO_2/O2,CO_2/N_2,CO_2/CF_4,CO_2/CH_4,CO_2/He,CO_2/H_2,CO_2/NH_3 and CO_2/CO were investigated based on the Boltzmann equation analysis,in which the reduced critical electric field strength(E/N)crof the gases was derived from the calculated electron energy distribution function(EEDF) by solving the Boltzmann transport equation.In this work,it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation.The results indicate that if He,H_2,N_2 and CH_4,in which there are high ionization coefficients or a lack of attachment reactions,are added into CO_2,the dielectric properties will decrease.On the other hand,air,O2,NH_3 and CF_4(ranked in terms of(E/N)_(cr) value in increasing order) have the potential to improve the dielectric property of CO_2 at room temperature. 相似文献
2.
《等离子体科学和技术》2019,21(12):125405
In this paper, the radial temperature distributions of the blown CO_2 arcs in a model gas circuit breaker were investigated by optical emission spectroscopy methods. The CO_2 flows with different flow rates(50, 100 and 150 1 min~(-1)) were created to axially blow the arcs burning in a polymethyl methacrylate(PMMA) nozzle. Discharges with different arc currents(200 and 400A) were conducted in the experiment. The absolute intensity method was applied for a carbon ionic line of 657.8 nm to obtain the radial temperature profiles of the arc columns at a cross-section 1 mm above the nozzle. The calibration for the intensity of the CⅡ 657.8 nm line was achieved by the Fowler–Milne method with the help of an oxygen atomic line of 777.2 nm.The highest temperature obtained in the arc center was up to 19 900 K when the arc current was 400 A and the CO_2 flow rate was 50 1 min~(-1), while the lowest temperature in the arc center was about 15 900 K when the arc current was 200 A and the CO_2 flow rate was 150 1min~(-1). The results indicate that as the arc current increases, the temperature in the arc center would also increase apparently, and a larger gas flow rate would lead to a lower central temperature in general. It can also be found that the influence of the CO_2 flow rate on the arc temperature was much less than that of the arc current under the present experimental conditions. In addition,higher temperature in the arc center would cause a sharper temperature decrease from the central region towards the edge. 相似文献
3.
采用光谱仪测量了等离子体点火器出口射流的发射光谱,利用玻尔兹曼曲线斜率法计算了射流的电子温度,并通过电离平衡方程计算了射流气体温度,获得点火器出口射流长度、射流速度、电子温度和射流温度随弧电流及进口氩气流量的变化规律。并分析了航空等离子体电弧射流中是否可使用电子温度来代替射流气体温度。实验表明:弧电流随着进口氩气流量的增大而减小;出口射流长度和速度随弧电流的增大而增大,随进口氩气流量的增大先增大后减小;出口电子温度、电子密度和射流温度随弧电流的增大而升高,随氩气流量的增大而降低。 相似文献
4.
采用静态吸附容量法,测定了温度273~303K、压力0~1kPa范围内,CO和CO2在UO2表面的吸附等温线,研究了CO和CO2的吸附热力学性质。结果表明,Langmuir方程和Freundlich方程分别是描述CO和CO2吸附的最优模型方程。CO2的吸附强度明显高于CO的,实验条件下,CO和CO2的最大吸附量分别为0.36和1.25μmol/g。CO的吸附热为26kJ/mol,表明吸附为物理吸附;CO2的吸附热随吸附量增加而减小,当吸附量由0.3μmol/g增至0.8μmol/g时,吸附热由46kJ/mol降至37kJ/mol,表明吸附同时存在化学吸附和物理吸附。 相似文献
5.
CO_2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency
A key problem in CO_2 conversion by thermal plasma is suppressing the inverse reactions,CO?+?O?→?CO_2 and CO?+?0.5O_2?→?CO_2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO_2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused.A CO_2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations. 相似文献
6.
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out,and the influence of CO2 flow rate,plasma power,discharge voltage,discharge frequency on CO2 conversion and process energy efficiency were investigated.It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power;the energy efficiency of CO2 conversion was almost a constant at a lower level,which was limited by CO2 inherent discharge character that determined a constant gap electric field strength.This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased.Therefore,one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma,but the energy efficiency is difficult to improve. 相似文献
7.
《等离子体科学和技术》2016,(10):1012-1019
This paper presents a brief overview of CO_2 reforming of CH_4(CRM) by various forms of "arc" plasma, which is more suitable to CRM, and the energy efficiency is used to evaluate different plasma processes specifically. According to the reported results, the arc thermal plasma with binode exhibited better performance. Moreover, the plasma CRM process was compared with the reported plasma steam reforming of CH_4(SRM) process, and the results showed that the former process has advantages on energy efficiency and CH_4 consumption. Additionally,it is believed that the plasma CRM process would be competitive with the conventional SRM process in both energy efficiency and CO_2 emission once the heat management is emphasized and the renewable power is used. Finally, a concept of plasma reactor for industrial application is proposed. 相似文献
8.
Shengjie ZHU 《等离子体科学和技术》2019,21(8):85504
A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2. The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition. It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2. The maximum CO2 decomposition rates of 48.6% and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively. 相似文献
9.
很多核设施会产生放射性水平较高的氙等稀有气体同位素,须经过特殊处理后才能向环境排放,研究以空气或其它气体为介质的氙的吸附净化方法具有较强的实用价值。研究了常温下多组分气体在活性炭上直接吸附时,杂质组分CO2对捕集氙效果的影响,比较了多级柱和单级柱两种方案的效果和活性炭用量,以及条件参数的影响。结果表明:相比较多级柱除杂质吸附氙的方法,单级柱直接吸附氙更易于实现工程应用;在流速约0.33cm/s下,活性炭单级柱常温常压吸附对氙捕集效率达到90%;在一定流速(0.02~1.2cm/s)范围内,可以忽略炭床阻力的影响。 相似文献
10.
TANG Zhongfeng CHEN Youshuang QIU Guangnan TONG Bin LI Hua TANG Xiaoxing KONG Xiangbo 《核技术(英文版)》2013,(6):36-42
Poly (methyl methacrylate) (PMMA) pellets are irradiated using 60Co gamma-ray in air and successfully formed by hot pressing at constant conditions. The irradiated PMMA membranes are prepared by supercritical carbon dioxide (scCO2) as a physical blowing agent using the pressure quench method. Effects of foaming conditions such as adsorbed dose, saturation temperature, pressure on the morphology and cell size of the microcellular PMMA membranes are investigated in detail. The results showed that the irradiated PMMA membranes possess spherically closed-cell structure with uniform cell size. They have a high cell density compared with virgin PMMA. The cell size uniformity becomes poor at dose lower than 10 kGy, but increases with the dose at dose higher than 10 kGy. The mean cell diameter is less than 10 μm and the cell density increases with increasing dose. The average cell size of irradiated PMMA membranes decreases and cell density increases with increased saturation temperature and pressure. The changes in morphology of membranes are attributed to the gamma-ray radiation and scCO2 synergistic effect. 相似文献
11.
《等离子体科学和技术》2016,18(9):902-906
The spectral emission and plasma parameters of SnO_2 plasmas have been investigated.A planar ceramic SnO_2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns.The temporal behavior of the specific emission lines from the SnO_2 plasma was characterized.The intensities of Sn I and Sn II lines first increased,and then decreased with the delay time.The results also showed a faster decay of Sn I atoms than that of Sn II ionic species.The temporal evolutions of the SnO_2 plasma parameters(electron temperature and density) were deduced.The measured temperature and density of SnO_2 plasma are 4.38 eV to0.5 eV and 11.38×10~(17) cm~(-3) to 1.1×10~(17) cm~(-3),for delay times between 0.1 μs and 2.2 μs.We also investigated the effect of the laser pulse energy on SnO_2 plasma. 相似文献
12.
13.
采用超临界CO2/硝酸-磷酸三丁酯(SC-CO2/HNO3-TBP)为萃取体系,研究各影响因素对其直接从含铀氧化物粉末中萃取铀的影响规律。结果表明:HNO3/TBP比值增大,铀萃取效率(EU)明显增大,比值为1.4时有利于萃取;比值一定时,随有机相总体积增加EU呈线性增加;萃取反应大致分为3个阶段:体系趋于稳定时的较慢阶段,稳定状态下的快速萃取阶段以及受粉末状态影响的缓慢阶段;随温度升高,EU在60℃时达到最大值91.4%;随萃取体系压力增大,EU在12 MPa时达到萃取峰值94.7%;萃取产物分离采用二级减压分离方式,在1#分离器8 MPa、2#分离器5 MPa条件下,能对萃取产物实现很好地分离。 相似文献
14.
运用因子分析技术和Multipak软件中的TFA功能对铀分别在CO和O2气氛中的俄歇谱进行了处理。分析表明,因子分析方法能有效地解决C(KLL)和U(LMM)俄歇峰中的重峰问题,并能从原始数据中剥离出纯组元;同时还清楚地表明,铀与CO在300℃作用1h后,在其表面形成了铀的碳化物(或碳氧化物);对铀在低压氧气中的氧化反应,用因子分析技术获得了金属态和氧化态的铀元素随氧气暴露剂量的变化情况,清楚地显示了氧化膜生长的3个阶段。 相似文献
15.
在恒热流加热工况下,对超临界CO2在不同倾角的微细圆管内混合对流换热进行了数值模拟。采用FLUENT软件分析了不同倾角时管内截面温度、轴向速度、二次流、上母线传热系数、周向壁面温度和Nuw的变化规律,并引入相对二次流动能定量表示二次流强度。研究发现:倾斜管内顶部流体温度高于底部,周向Nuw在底部高于顶部,速度分布不是中心对称且其峰值出现在管中心轴线下侧;浮升力引发的二次流先增大后减小,且在靠近入口处达到峰值;倾斜管内上母线温度高于下母线,上母线传热系数在拟临界温度附近达到峰值。通过水平管中浮升力判据,得到了浮升力对对流换热的影响规律。 相似文献
16.
Radiation shielding design of the CFETR polarimeter interferometer and CO2 dispersion interferometer
Bo HONG 《等离子体科学和技术》2022,24(6):64010
A three-wave based laser polarimeter/interferometer and a CO2 laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor (CFETR). Radiation shielding is designed for the combination of polarimeter/interferometer and CO2 dispersion interferometer. Furthermore, neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO2 dispersion interferometer and the major material components of CFETR. The polarimeter/interferometer and CO2 dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors. The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding. Since the mirrors of CO2 dispersion interferometer are very close to the diagnostic first wall, shielding space is limited and the CO2 dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer. The dose rate after shutdown 106 s in the back-drawer structure has been estimated to be 83 μSv h−1 when the radiation shield is filled in the diagnostic shielding modules, which is below the design threshold of 100 μSv h−1. Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO2 dispersive interferometer in CFETR. 相似文献
17.
A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source’s spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly. 相似文献
18.
超临界蒸发器应用到核电中,可大幅提高机组的热效率。超临界压力流体的热物性在准临界温度附近变化非常剧烈,会对其流动和换热产生很大的影响。研究超临界压力流体在螺旋管内的流动和换热规律,有利于对超临界螺旋管蒸发器的设计。本文采用RNG k-ε和SST k-ω模型对超临界CO2在螺旋管中的流动换热情况进行了数值模拟,发现SST k-ω模型模拟结果与实验结果符合得更好。基于此模型,分析了不同进口质量流速及不同热流密度对管壁温和换热系数的影响,发现随着质量流速的减小、热流密度的增加,峰值向远离hpc的一侧偏移。最后讨论并分析了周向壁温和换热系数的分布情况,发现壁温在φ=315°处最高,需在实验操作或实际运行中加以监控,以保障螺旋管蒸发器的安全运行。 相似文献
19.
采用水热合成法制备了Ni/CeO2-ZrO2-Al2O3催化剂。进行了添加和不添加水蒸气的CH4-CO2催化重整反应,测量了积碳量,并用EXAFS手段测试了催化剂Ni的K吸收边。结果表明,反应前后最近邻Ni-Ni配位距离无明显变化,而配位数却变化明显。无水蒸气反应后Ni-Ni配位数有较大幅度的减少;而添加了水蒸气,Ni-Ni配位数比反应前减少幅度小。水蒸气的添加能减少积碳量,稳定催化剂中Ni的结构,从而提高催化反应的稳定性。 相似文献
20.
为观察碳酸锂对Graves甲亢患者摄^131I率的影响,将15例24h摄^131I率<55%,拟进行^131I治疗的Graves甲亢患者,给碳酸锂口服每日三次,每次250mg,6天后进行甲状腺摄^131I率测定。结果表明:患者口服碳酸锂后,甲状腺摄^131I率明显升高(P<0.01).4h摄^131I率平均提高88%;6h摄^131I率平均提高73%;24h摄^131I率平均提高66%。根据服用碳酸锂后24h甲状腺摄^131I率,计算其治疗用^131I量为服用碳酸锂前的62%,平均减少了38%。因此碳酸锂可以大大提高Graves甲亢患者摄^131I率,降低甲亢患者治疗用^131I的剂量。 相似文献