首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A cold floating probe method was compared with the emissive floating probe method in terms of a low-pressure radio-frequency inductive discharge. The dependences of difference between the plasma potential and the floating potential on the electron temperature 1–8 eV, plasma density 109 –1012 cm−3 and magnetic field 100–650 G were obtained. It was demonstrated that the difference between the potentials that obtained by these two methods can differ significantly from the expected value of 5.2 kTe/e for argon.  相似文献   

2.
Hollow cathodes serve as electron sources in Hall thrusters,ion thrusters and other electric propulsion systems.One of the vital problems in their application is the cathode erosion.However,the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood.In this paper,both potential measurements and simulation analyses were performed to explain the formation of high-energy ions.A high-speed camera,a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode.The temporal structure,electron temperature,electron density,and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above.The experimental results show that there exists a potential hill (about 30 V) and also severe potential oscillations in the near-plume region.Moreover,a simple 2D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions.The simulation results show that the energy of ions gained from the static potential background is about 20 eV,but it could reach to 60 eV when the plasma oscillates.  相似文献   

3.
This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma. Dust in a plasma has a large impact on the properties of the plasma. According to a probe diagnostic experiment on a dust-free plasma combined with machine learning, an experiment on a dusty plasma is designed and carried out. Using a specific experimental device, dusty plasma with a stable and controllable dust particle density is generated. A Langmuir probe is used to measure the electron density and electron temperature under different pressures, discharge currents, and dust particle densities. The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained. Finally, the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.  相似文献   

4.
During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号