首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.  相似文献   

2.
In this work, electron cyclotron emission (ECE) is simulated by using the code SPECE to study the spatial localization of ECE measurement in EAST plasmas heated by lower hybrid wave (LHW). The results indicate that generally there are two emission layers for an individual frequency in plasmas with non-thermal electrons, and they are separately attributed to the thermal electrons and non-thermal electrons. The emission layer due to the thermal electrons is nearly identical to that for the case with Maxwellian distribution. The emission layer due to non-thermal electrons is well localized in the location of the non-thermal electrons. Even though the non-thermal emission layer is broader, the emission intensity is smaller than that from the thermal emission layer for the cases studied in this work. Localized electron temperature fluctuations can still be distinguished by ECE measurement as long as it does not coexist with the non-thermal electrons. Sawtooth inversion radii and tearing mode island location determined respectively by the ECE measurement and the soft x-ray measurement for a LHW-heated plasma show a good agreement, and this indicates that the ECE measurement in the plasma core region is not seriously polluted.  相似文献   

3.
A cascaded system of electrical discharges(non-thermal plasma)and adsorption process was investigated for the removal of oxides of Nitrogen(NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust.The non-thermal plasma and adsorption processes were separately studied first and then the casecaded procxess was studied.In this study,different types of adsorbents were used.The NOx removal efficiency processes and the removal efficiency was found almost invariant in time.When associated by plasma,among the adsorbents studied.Activated charcoal and MS-13X were more effective for NOx and THC removal respectively.The experiments were conducted at no load and at 50% load conditions.The plasma reactor was kept at room temperature throughout the experiment,while the temperature of the adsorbent reactor was varied.A relative comparison of adsorbents was discussed at the end.  相似文献   

4.
This study aimed to discuss the removal of hydrogen sulfide (H2S) with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor,which is useful in the field of plasma environmental applications.We explored the influence of various factors upon H2S removal efficiency (ηH2S) and energy yield (Ey),such as specific energy density (SED),initial concentration,gas flow velocity and the reactor configuration.The study showed that we can achieve ηH2S of 91% and the best Ey of 3100 mg kWh-1 when we set the SED,gas flow velocity,initial H2S concentration and layers of quartz tubes at 33.2 J 1-1,8.0 m s-1,30 mg m-3 and five layers,correspondingly.The average rate constant for the decomposition of hydrogen sulfide was 0.206 g m-3 s-1.In addition,we also presented the optimized working conditions,byproduct analysis and decomposition mechanism.  相似文献   

5.
A new magnetic configuration for magnetic confinement of fusion plasmas is proposed. This configuration is closely related to the levitated dipole configuration, and shares the same mechanism for plasma stability. The difference between the two configurations rests in the use of shaping coils to alter the far field region of the dipole field, resulting in greatly reduced total reactor volume given equivalent plasma parameters and core volume. In this paper we will discuss the magnetic geometry of the compact levitated dipole configurations and employ stability theory in the low beta limit to predict its properties.  相似文献   

6.
When upgrading a research nuclear reactor for a higher power output it can be expected that the cooling flow rate has to be increased. In the case of a reactor designed with a laminar cooling flow this upgrade may take the flow into the transition hydrodynamic regime.  相似文献   

7.
In this paper, the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a double-tube experiment system. The two tubes had the same structure, and their closed ends were installed with a plasma generator and a spark plug, respectively. The propagation characteristics of the flame were measured by pressure sensors and ion probes. The experiment results show that, compared with a spark plug, the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully, it also heightened the pressure value of detonation wave. Meanwhile, the detonation wave development time and the entire flame propagation time were reduced by half. All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied.  相似文献   

8.
This study aimed to discuss the removal of hydrogen sulfide(H_2S)with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor,which is useful in the field of plasma environmental applications.We explored the influence of various factors upon H_2S removal efficiency(η_(H_2S))and energy yield(Ey),such as specific energy density(SED),initial concentration,gas flow velocity and the reactor configuration.The study showed that we can achieveη_(H_2S)of 91%and the best Ey of 3100 mg kWh~(-1)when we set the SED,gas flow velocity,initial H_2S concentration and layers of quartz tubes at 33.2 J 1~(-1),8.0 m s~(-1),30 mg m~(-3)and five layers,correspondingly.The average rate constant for the decomposition of hydrogen sulfide was 0.206 gm~(-3)s~(-1).In addition,we also presented the optimized working conditions,byproduct analysis and decomposition mechanism.  相似文献   

9.
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.  相似文献   

10.
To explore the feasibility of a degradation approach by non-thermal plasma and the corresponding degradation pathways,studies on the oxadiazon removal in synthetic wastewater by a dielectric barrier discharge plasma reactor were investigated.The loss of the nitro group,dechlorination and ring cleavage is mainly involved in the non-thermal plasma degradation pathways of oxadiazon in a solution based on the OES and LC-MS analysis.Detection of EC25 and the production of the chlorine ion and nitrate ion further demonstrate the feasibility and validity of the approach.The conditions with a proper applied voltage,solution flow rate,oxygen flow rate,and solution pH contribute to the plasma degradation processes with a degradation ratio of over 94%.  相似文献   

11.
Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar–10% O_2, 80% Ar–20% O_2 and 0% Ar–100% O_2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from~0.0115 S m~(-1) up to ~0.0430 S m~(-1) after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were:(1) lower typical power consumption,(2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation,(3) a relatively lower temperature of the aqueous solution during the process, and(4) the plasma generation length is larger.  相似文献   

12.
Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH_4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10~(15) cm~(-3).The mass spectrum indicated that a variety of unsaturated hydrocarbons(C_2H_4,C_3H_6,C_6H_6,etc.) and several highly unsaturated hydrocarbons(C_4H_2,C_5H_6,etc.) were produced in the non-thermal arc plasmas.  相似文献   

13.
Based on high-density and high-temperature plasma experiments in the large helical device (LHD), conceptual design studies of the LHD-type helical DEMO reactor FFHR-d1 have been conducted by integrating wide-ranged R&D activities on core plasmas and reactor technologies through cooperative researches under the fusion engineering research project, which has been launched newly in NIFS. Current activities for the FFHR-d1 in this project are presented on design window analyses with designs on core plasma, neutronics for liquid blankets, continuous helical magnets, pellet fueling, tritium systems and plasma heating devices.  相似文献   

14.
In this work, we demonstrate a flexible multi-pin plasma generator with movable electrodes, which can change the shape of the electrode array freely, and then provide a large-area uniform plasma for the treatment of surfaces of different shapes. Discharge characteristics includingUIwaveforms and discharge images and sterilization performance under three different electrode configurations (flat–flat, flat–curve, curve–curve) are investigated. Very similar results are acquired between the flat–flat configuration and the curve–curve configuration, which is much better than that under flat–curve configuration. This flexible multi-pin plasma generator offers a simple method to treat different irregularly shaped surfaces uniformly with a single device. Moreover, this device provides a foundation for developing a self-adaption large-scale uniform plasma generator by further introducing automatic adjustment of the position of every electrode driven by motors with discharge current feedback in the following study. Thus it will promote the applications of atmospheric-pressure cold plasmas significantly  相似文献   

15.
In this work, a computational modeling study on the mechanism of the acceleration behavior of a plasma bullet in needle-plane configuration is presented. Above all, in our model,two sub-models of time-dependent plasma dynamics and laminar flow are connected using a oneway coupled method, and both the working gas and the surrounding gas around the plasma jet are assumed to be the same, which are premixed He/N_2 gas. The mole fractions of the N_2(NMF)ingredient are set to be 0.01%, 0.1% and 1% in three cases, respectively. It is found that in each case, the plasma bullet accelerates with time to a peak velocity after it exits the nozzle and then decreases until getting to the treated surface, and that the velocity of the plasma bullet increases at each time moment with the peak value changing from 0.72×10~6m/s to 0.80×10~6m/s but then drops more sharply when the NMF varies from 0.01% to 1%. Besides, the electron impact ionizations of helium neutrals and nitrogen molecules are found to have key influences on the propagation of a plasma bullet instead of the penning ionization.  相似文献   

16.
This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components‘ concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.  相似文献   

17.
Pulsed discharge plasma has exhibited active potential to prepare low molecular weight chitosan. In the present study, the viscosity of ehitosan solution was decreased noticeably after treated with pulsed corona discharge plasma. An experimental investigation on electrical characteristics of pulsed corona discharge plasma in chitosan solution was conducted with a view toward getting insight into discharge process. Factors affecting I-V curve, single pulse injec- tion energy and pulse width were studied. Experimental results showed positive effect of pulsed peak voltage on discharge plasma in chitosan solution. Pulse-forming capacitor greatly influenced the discharge form, and 4 nF was observed as a suitable value for efficiently generating stable discharge plasmas. As the electrode distance was larger than 10 ram, it had slight impact on dis- charge plasma due to the excellent conductive-property of chitosan solution. The injection energy significantly increased with air flow rate, while the pulse width hardly changed as the air flow rate increased from 0.5 m^3/h to 1.0 m^3/h. This study is expected to provide reference for promoting the application of pulsed corona discharge plasma to ehitosan solution treatment.  相似文献   

18.
19.
BfS is in the progress of developing a closure concept for the repository for low and intermediate level radioactive waste in Morsleben (ERAM). In the course of this work, the optimal design of the plug is currently being evaluated with respect to gas escape and the exchange of potentially contaminated brine through the plug. For the sealing to behave well in the long term, it is important that the gas formation processes do not disrupt the plug or enhance the radionuclide release, e.g. by means of excessive pressure build-up. The object has been to study different scenarios for gas and brine transport for two alternative plug concepts, by using the multi-phase flow model TOUGH. Rock convergence due to creep has been included in the modelling. The results of the calculations indicate that the closure concepts restrict he exchange of brine and allow escape of gas; an excavation-damaged zone around tunnels is a potential pathway for gas and brine, and the effect of the rock convergence is small. The results also indicate that a very dense plug results in excessive pressurisation of the repository, whereas a permeable plug results in an increased exchange of brine.  相似文献   

20.
The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species, which can cooperate with hydraulic cavitation gas–liquid mixer to realize the application of advanced oxidation technology in water treatment. In this technology, the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas–liquid mixed container. In this paper, the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image, electrical characteristics and spectral diagnosis, in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa. The study indicated that, when the pressure decreases, the duty ratio of ionization in the discharge gap and number of electrons with high energy increases, leading to a rise in reactive oxygen species production. When the oxygen reaches the maximum ionization, the concentration of reactive oxygen species is the highest. Then, the discharge intensity continues to increase, producing more heat, which will decompose the ozone and lower the production of reactive oxygen species. The oxygen plasma reactor has an optimum working pressure at different input powers, which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号