首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ensemble classifiers are proposed as modeling techniques for customer churn prediction. In Rotation Forests, feature extraction is applied to feature subsets in order to rotate the input data for training base classifiers, while RotBoost combines Rotation Forest with AdaBoost. In an experimental validation based on data sets from four real-life customer churn prediction projects, Rotation Forest and RotBoost are compared to a set of well-known benchmark classifiers. Moreover, variations of Rotation Forest and RotBoost are compared, implementing three alternative feature extraction algorithms: principal component analysis (PCA), independent component analysis (ICA) and sparse random projections (SRP). The performance of rotation-based ensemble classifier is found to depend upon: (i) the performance criterion used to measure classification performance, and (ii) the implemented feature extraction algorithm. In terms of accuracy, RotBoost outperforms Rotation Forest, but none of the considered variations offers a clear advantage over the benchmark algorithms. However, in terms of AUC and top-decile lift, results clearly demonstrate the competitive performance of Rotation Forests compared to the benchmark algorithms. Moreover, ICA-based Rotation Forests outperform all other considered classifiers and are therefore recommended as a well-suited alternative classification technique for the prediction of customer churn that allows for improved marketing decision making.  相似文献   

2.
The telecommunication industry faces fierce competition to retain customers, and therefore requires an efficient churn prediction model to monitor the customer’s churn. Enormous size, high dimensionality and imbalanced nature of telecommunication datasets are main hurdles in attaining the desired performance for churn prediction. In this study, we investigate the significance of a Particle Swarm Optimization (PSO) based undersampling method to handle the imbalance data distribution in collaboration with different feature reduction techniques such as Principle Component Analysis (PCA), Fisher’s ratio, F-score and Minimum Redundancy and Maximum Relevance (mRMR). Whereas Random Forest (RF) and K Nearest Neighbour (KNN) classifiers are employed to evaluate the performance on optimally sampled and reduced features dataset. Prediction performance is evaluated using sensitivity, specificity and Area under the curve (AUC) based measures. Finally, it is observed through simulations that our proposed approach based on PSO, mRMR, and RF termed as Chr-PmRF, performs quite well for predicting churners and therefore can be beneficial for highly competitive telecommunication industry.  相似文献   

3.
The Rotation Forest classifier is a successful ensemble method for a wide variety of data mining applications. However, the way in which Rotation Forest transforms the feature space through PCA, although powerful, penalizes training and prediction times, making it unfeasible for Big Data. In this paper, a MapReduce Rotation Forest and its implementation under the Spark framework are presented. The proposed MapReduce Rotation Forest behaves in the same way as the standard Rotation Forest, training the base classifiers on a rotated space, but using a functional implementation of the rotation that enables its execution in Big Data frameworks. Experimental results are obtained using different cloud-based cluster configurations. Bayesian tests are used to validate the method against two ensembles for Big Data: Random Forest and PCARDE classifiers. Our proposal incorporates the parallelization of both the PCA calculation and the tree training, providing a scalable solution that retains the performance of the original Rotation Forest and achieves a competitive execution time (in average, at training, more than 3 times faster than other PCA-based alternatives). In addition, extensive experimentation shows that by setting some parameters of the classifier (i.e., bootstrap sample size, number of trees, and number of rotations), the execution time is reduced with no significant loss of performance using a small ensemble.  相似文献   

4.
Rotation forest: A new classifier ensemble method   总被引:8,自引:0,他引:8  
We propose a method for generating classifier ensembles based on feature extraction. To create the training data for a base classifier, the feature set is randomly split into K subsets (K is a parameter of the algorithm) and Principal Component Analysis (PCA) is applied to each subset. All principal components are retained in order to preserve the variability information in the data. Thus, K axis rotations take place to form the new features for a base classifier. The idea of the rotation approach is to encourage simultaneously individual accuracy and diversity within the ensemble. Diversity is promoted through the feature extraction for each base classifier. Decision trees were chosen here because they are sensitive to rotation of the feature axes, hence the name "forest.” Accuracy is sought by keeping all principal components and also using the whole data set to train each base classifier. Using WEKA, we examined the Rotation Forest ensemble on a random selection of 33 benchmark data sets from the UCI repository and compared it with Bagging, AdaBoost, and Random Forest. The results were favorable to Rotation Forest and prompted an investigation into diversity-accuracy landscape of the ensemble models. Diversity-error diagrams revealed that Rotation Forest ensembles construct individual classifiers which are more accurate than these in AdaBoost and Random Forest, and more diverse than these in Bagging, sometimes more accurate as well.  相似文献   

5.
Generalized additive models (GAMs) are a generalization of generalized linear models (GLMs) and constitute a powerful technique which has successfully proven its ability to capture nonlinear relationships between explanatory variables and a response variable in many domains. In this paper, GAMs are proposed as base classifiers for ensemble learning. Three alternative ensemble strategies for binary classification using GAMs as base classifiers are proposed: (i) GAMbag based on Bagging, (ii) GAMrsm based on the Random Subspace Method (RSM), and (iii) GAMens as a combination of both. In an experimental validation performed on 12 data sets from the UCI repository, the proposed algorithms are benchmarked to a single GAM and to decision tree based ensemble classifiers (i.e. RSM, Bagging, Random Forest, and the recently proposed Rotation Forest). From the results a number of conclusions can be drawn. Firstly, the use of an ensemble of GAMs instead of a single GAM always leads to improved prediction performance. Secondly, GAMrsm and GAMens perform comparably, while both versions outperform GAMbag. Finally, the value of using GAMs as base classifiers in an ensemble instead of standard decision trees is demonstrated. GAMbag demonstrates performance comparable to ordinary Bagging. Moreover, GAMrsm and GAMens outperform RSM and Bagging, while these two GAM ensemble variations perform comparably to Random Forest and Rotation Forest. Sensitivity analyses are included for the number of member classifiers in the ensemble, the number of variables included in a random feature subspace and the number of degrees of freedom for GAM spline estimation.  相似文献   

6.
Customer retention in telecommunication companies is one of the most important issues in customer relationship management, and customer churn prediction is a major instrument in customer retention. Churn prediction aims at identifying potential churning customers. Traditional approaches for determining potential churning customers are based only on customer personal information without considering the relationship among customers. However, the subscribers of telecommunication companies are connected with other customers, and network properties among people may affect the churn. For this reason, we proposed a new procedure of the churn prediction by examining the communication patterns among subscribers and considering a propagation process in a network based on call detail records which transfers churning information from churners to non-churners. A fast and effective propagation process is possible through community detection and through setting the initial energy of churners (the amount of information transferred) differently in churn date or centrality. The proposed procedure was evaluated based on the performance of the prediction model trained with a social network feature and traditional personal features.  相似文献   

7.
Rotation Forest, an effective ensemble classifier generation technique, works by using principal component analysis (PCA) to rotate the original feature axes so that different training sets for learning base classifiers can be formed. This paper presents a variant of Rotation Forest, which can be viewed as a combination of Bagging and Rotation Forest. Bagging is used here to inject more randomness into Rotation Forest in order to increase the diversity among the ensemble membership. The experiments conducted with 33 benchmark classification data sets available from the UCI repository, among which a classification tree is adopted as the base learning algorithm, demonstrate that the proposed method generally produces ensemble classifiers with lower error than Bagging, AdaBoost and Rotation Forest. The bias–variance analysis of error performance shows that the proposed method improves the prediction error of a single classifier by reducing much more variance term than the other considered ensemble procedures. Furthermore, the results computed on the data sets with artificial classification noise indicate that the new method is more robust to noise and kappa-error diagrams are employed to investigate the diversity–accuracy patterns of the ensemble classifiers.  相似文献   

8.
Predicting customer churn with the purpose of retaining customers is a hot topic in academy as well as in today’s business environment. Targeting the right customers for a specific retention campaign carries a high priority. This study focuses on two aspects in which churn prediction models could be improved by (i) relying on customer information type diversity and (ii) choosing the best performing classification technique. (i) With the upcoming interest in new media (e.g. blogs, emails, ...), client/company interactions are facilitated. Consequently, new types of information are available which generate new opportunities to increase the prediction power of a churn model. This study contributes to the literature by finding evidence that adding emotions expressed in client/company emails increases the predictive performance of an extended RFM churn model. As a substantive contribution, an in-depth study of the impact of the emotionality indicators on churn behavior is done. (ii) This study compares three classification techniques – i.e. Logistic Regression, Support Vector Machines and Random Forests – to distinguish churners from non-churners. This paper shows that Random Forests is a viable opportunity to improve predictive performance compared to Support Vector Machines and Logistic Regression which both exhibit an equal performance.  相似文献   

9.
针对数据挖掘方法在电信客户流失预测中的局限性,提出将信息融合与数据挖掘相结合,分别从数据层、特征层、决策层构建客户流失预测模型。确定客户流失预测指标;根据客户样本在特征空间分布的差异性对客户进行划分,得到不同特征的客户群;不同客户群采用不同算法构建客户流失预测模型,再通过人工蚁群算法求得模型融合权重,将各模型的预测结果加权得到预测最终结果。实验结果表明,基于信息融合的客户流失预测模型确实比传统模型更优。  相似文献   

10.
Today, feature selection is an active research in machine learning. The main idea of feature selection is to choose a subset of available features, by eliminating features with little or no predictive information, as well as redundant features that are strongly correlated. There are a lot of approaches for feature selection, but most of them can only work with crisp data. Until now there have not been many different approaches which can directly work with both crisp and low quality (imprecise and uncertain) data. That is why, we propose a new method of feature selection which can handle both crisp and low quality data. The proposed approach is based on a Fuzzy Random Forest and it integrates filter and wrapper methods into a sequential search procedure with improved classification accuracy of the features selected. This approach consists of the following main steps: (1) scaling and discretization process of the feature set; and feature pre-selection using the discretization process (filter); (2) ranking process of the feature pre-selection using the Fuzzy Decision Trees of a Fuzzy Random Forest ensemble; and (3) wrapper feature selection using a Fuzzy Random Forest ensemble based on cross-validation. The efficiency and effectiveness of this approach is proved through several experiments using both high dimensional and low quality datasets. The approach shows a good performance (not only classification accuracy, but also with respect to the number of features selected) and good behavior both with high dimensional datasets (microarray datasets) and with low quality datasets.  相似文献   

11.
Random projections for linear SVM ensembles   总被引:1,自引:1,他引:0  
This paper presents an experimental study using different projection strategies and techniques to improve the performance of Support Vector Machine (SVM) ensembles. The study has been made over 62 UCI datasets using Principal Component Analysis (PCA) and three types of Random Projections (RP), taking into account the size of the projected space and using linear SVMs as base classifiers. Random Projections are also combined with the sparse matrix strategy used by Rotation Forests, which is a method based in projections too. Experiments show that for SVMs ensembles (i) sparse matrix strategy leads to the best results, (ii) results improve when projected space dimension is bigger than the original one, and (iii) Random Projections also contribute to the results enhancement when used instead of PCA. Finally, random projected SVMs are tested as base classifiers of some state of the art ensembles, improving their performance.  相似文献   

12.
用户流失问题是电信运营商面临的亟待解决的问题,针对不同的场景,业界研究开发了多个用户离网预测系统。服务号码捆绑指用户在使用运营商服务期间,与银行、电商、便利店等第三方服务提供商通过绑定手机号产生联系。通过研究发现用户在服务存续期间普遍会绑定多种第三方服务提供商,这些商家会不定时给用户推送短信,当用户即将流失时,多数用户会逐渐取消这类服务的绑定。因此,服务号码捆绑特征对于离网用户的甄别起到了重要的作用。采用随机森林算法构建离网预测模型,利用逻辑回归算法对服务号码捆绑特征进行降维,并加入模型,进行离网用户分析,从而辅助决策者制订相应的客户维挽策略,降低客户离网率。实验结果表明,服务号码软捆绑特征能够提高系统的分析预测能力。  相似文献   

13.
Automatic keyword extraction is an important research direction in text mining, natural language processing and information retrieval. Keyword extraction enables us to represent text documents in a condensed way. The compact representation of documents can be helpful in several applications, such as automatic indexing, automatic summarization, automatic classification, clustering and filtering. For instance, text classification is a domain with high dimensional feature space challenge. Hence, extracting the most important/relevant words about the content of the document and using these keywords as the features can be extremely useful. In this regard, this study examines the predictive performance of five statistical keyword extraction methods (most frequent measure based keyword extraction, term frequency-inverse sentence frequency based keyword extraction, co-occurrence statistical information based keyword extraction, eccentricity-based keyword extraction and TextRank algorithm) on classification algorithms and ensemble methods for scientific text document classification (categorization). In the study, a comprehensive study of comparing base learning algorithms (Naïve Bayes, support vector machines, logistic regression and Random Forest) with five widely utilized ensemble methods (AdaBoost, Bagging, Dagging, Random Subspace and Majority Voting) is conducted. To the best of our knowledge, this is the first empirical analysis, which evaluates the effectiveness of statistical keyword extraction methods in conjunction with ensemble learning algorithms. The classification schemes are compared in terms of classification accuracy, F-measure and area under curve values. To validate the empirical analysis, two-way ANOVA test is employed. The experimental analysis indicates that Bagging ensemble of Random Forest with the most-frequent based keyword extraction method yields promising results for text classification. For ACM document collection, the highest average predictive performance (93.80%) is obtained with the utilization of the most frequent based keyword extraction method with Bagging ensemble of Random Forest algorithm. In general, Bagging and Random Subspace ensembles of Random Forest yield promising results. The empirical analysis indicates that the utilization of keyword-based representation of text documents in conjunction with ensemble learning can enhance the predictive performance and scalability of text classification schemes, which is of practical importance in the application fields of text classification.  相似文献   

14.
To build a successful customer churn prediction model, a classification algorithm should be chosen that fulfills two requirements: strong classification performance and a high level of model interpretability. In recent literature, ensemble classifiers have demonstrated superior performance in a multitude of applications and data mining contests. However, due to an increased complexity they result in models that are often difficult to interpret. In this study, GAMensPlus, an ensemble classifier based upon generalized additive models (GAMs), in which both performance and interpretability are reconciled, is presented and evaluated in a context of churn prediction modeling. The recently proposed GAMens, based upon Bagging, the Random Subspace Method and semi-parametric GAMs as constituent classifiers, is extended to include two instruments for model interpretability: generalized feature importance scores, and bootstrap confidence bands for smoothing splines. In an experimental comparison on data sets of six real-life churn prediction projects, the competitive performance of the proposed algorithm over a set of well-known benchmark algorithms is demonstrated in terms of four evaluation metrics. Further, the ability of the technique to deliver valuable insight into the drivers of customer churn is illustrated in a case study on data from a European bank. Firstly, it is shown how the generalized feature importance scores allow the analyst to identify the relative importance of churn predictors in function of the criterion that is used to measure the quality of the model predictions. Secondly, the ability of GAMensPlus to identify nonlinear relationships between predictors and churn probabilities is demonstrated.  相似文献   

15.
武帅  王雄  段云峰 《微计算机信息》2007,23(12):163-165
使用支持向量机(SVM,Support Vector Machine)数据挖掘方法对移动通信行业客户流失倾向进行预测,对支持向量机同决策树算法预测的结果进行对比,结果表明支持向量机对本文所选取的属性数据具有更强的分类能力,而且在不同训练数据规模情况下预测模型有较好的稳定性。实验证实,运用本研究模型选取全体客户的22.31%,可以预测出50.07%流失的客户,表明本研究中提出的预测模型具有实际应用价值。  相似文献   

16.
The amounts and types of remote sensing data have increased rapidly, and the classification of these datasets has become more and more overwhelming for a single classifier in practical applications. In this paper, an ensemble algorithm based on Diversity Ensemble Creation by Oppositional Relabeling of Artificial Training Examples (DECORATEs) and Rotation Forest is proposed to solve the classification problem of remote sensing image. In this ensemble algorithm, the RBF neural networks are employed as base classifiers. Furthermore, interpolation technology for identical distribution is used to remold the input datasets. These remolded datasets will construct new classifiers besides the initial classifiers constructed by the Rotation Forest algorithm. The change of classification error is used to decide whether to add another new classifier. Therefore, the diversity among these classifiers will be enhanced and the accuracy of classification will be improved. Adaptability of the proposed algorithm is verified in experiments implemented on standard datasets and actual remote sensing dataset.  相似文献   

17.
Currently, a key industrial challenge in friction processes is the prediction of surface roughness and loss of mass under different machining processes, such as Electro-Discharge Machining (EDM), and turning and grinding processes. Under industrial conditions, only the sliding distance is easily evaluated in friction processes, while the acquisition of other variables usually implies expensive costs for production centres, such as the integration of sensors in functioning machine-tools. Besides, appropriate datasets are usually very small, because the testing of different friction conditions is also expensive. These two restrictions, small datasets and very few inputs, make it very difficult to use Artificial Intelligence (AI) techniques to model the industrial problem. So, the use of the isotropy level of the surface structure is proposed, as another input that is easily evaluated prior to the friction process. In this example, the friction processes of a cubic sample of 102Cr6 (40 HRC) steel and a further element made of X210Cr12 (60 HRC) steel are considered. Different artificial intelligence techniques, such as artificial regression trees, multilayer perceptrons (MLPs), radial basis networks (RBFs), and Random Forest, were tested considering the isotropy level as either a nominal or a numeric attribute, to evaluate improvements in the accuracy of surface roughness and loss-of-mass predictions. The results obtained with real datasets showed that RBFs and MLPs provided the most accurate models for loss of mass and surface roughness prediction, respectively. MLPs have slightly higher surface prediction accuracy than Random Forest, although MLP models are very sensitive to the tuning of their parameters (a small mismatch between the learning rate and the momentum in the MLP will drastically reduce the accuracy of the model). In contrast, Random Forest has no parameter to be tuned and its prediction is almost as good as MLPs for surface roughness, so Random Forest will be more suitable for industrial use where no expert in AI model tuning is available. Moreover, the inclusion of the isotropy level in the dataset, especially as a numeric attribute, greatly improved the accuracy of the models, in some cases, by up to 52% for MLPs, and by a smaller proportion of 16% in the Random Forest models in terms of Root Mean Square Error. Finally, Random Forest ensembles only trained with low and very high isotropy level experimental datasets generated reliable models for medium levels of isotropy, thereby offering a solution to reduce the size of training datasets.  相似文献   

18.
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry, with its persistent quest for high-performance predictive models, is in great need of this new learning methodology. A marginal improvement in the prediction indices of petroleum reservoir properties could have huge positive impact on the success of exploration, drilling and the overall reservoir management portfolio. Support vector machines (SVM) is one of the promising machine learning tools that have performed excellently well in most prediction problems. However, its performance is a function of the prudent choice of its tuning parameters most especially the regularization parameter, C. Reports have shown that this parameter has significant impact on the performance of SVM. Understandably, no specific value has been recommended for it. This paper proposes a stacked generalization ensemble model of SVM that incorporates different expert opinions on the optimal values of this parameter in the prediction of porosity and permeability of petroleum reservoirs using datasets from diverse geological formations. The performance of the proposed SVM ensemble was compared to that of conventional SVM technique, another SVM implemented with the bagging method, and Random Forest technique. The results showed that the proposed ensemble model, in most cases, outperformed the others with the highest correlation coefficient, and the lowest mean and absolute errors. The study indicated that there is a great potential for ensemble learning in petroleum reservoir characterization to improve the accuracy of reservoir properties predictions for more successful explorations and increased production of petroleum resources. The results also confirmed that ensemble models perform better than the conventional SVM implementation.  相似文献   

19.
A generalisation of bottom-up pruning is proposed as a model level combination method for a decision tree ensemble. Bottom up pruning on a single tree involves choosing between a subtree rooted at a node, and a leaf, dependant on a pruning criterion. A natural extension to an ensemble of trees is to allow subtrees from other ensemble trees to be grafted onto a node in addition to the operations of pruning to a leaf and leaving the existing subtree intact. Suitable pruning criteria are proposed and tested for this multi-tree pruning context. Gains in both performance and in particular compactness over individually pruned trees are observed in tests performed on a number of datasets from the UCI database. The method is further illustrated on a churn prediction problem in the telecommunications domain.  相似文献   

20.
A classifier ensemble is a set of classifiers whose individual decisions are combined to classify new examples. Classifiers, which can represent complex decision boundaries are accurate. Kernel functions can also represent complex decision boundaries. In this paper, we study the usefulness of kernel features for decision tree ensembles as they can improve the representational power of individual classifiers. We first propose decision tree ensembles based on kernel features and found that the performance of these ensembles is strongly dependent on the kernel parameters; the selected kernel and the dimension of the kernel feature space. To overcome this problem, we present another approach to create ensembles that combines the existing ensemble methods with the kernel machine philosophy. In this approach, kernel features are created and concatenated with the original features. The classifiers of an ensemble are trained on these extended feature spaces. Experimental results suggest that the approach is quite robust to the selection of parameters. Experiments also show that different ensemble methods (Random Subspace, Bagging, Adaboost.M1 and Random Forests) can be improved by using this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号