共查询到20条相似文献,搜索用时 62 毫秒
1.
《硬质合金》2016,(3):161-168
以Z81作为钎料,对碳的质量分数分别为5.40%、5.45%、5.50%的WC-8%Co硬质合金与1Cr13不锈钢进行高频感应钎焊。通过OM、SEM分析了钎焊接头的微观组织,并对其力学性能进行了分析,同时采用ANSYS对钎焊接头残余应力进行了模拟。研究表明:在焊接过程中,碳含量对钎焊接头微裂纹的产生、接头处硬质合金的硬度、断裂韧性和强度产生影响。当碳的质量分数为5.40%和5.50%时,在硬质合金与焊缝的界面处出现焊接微裂纹;不同碳含量的硬质合金其硬度均随着与焊缝距离的减小而减小;三种碳含量的硬质合金的断裂韧性均在距焊缝300μm处急剧下降,但其中碳的质量分数为5.45%时的硬质合金下降幅度最小且此碳含量下钎焊接头抗弯强度达到最大值458 MPa。通过ANSYS模拟得出硬质合金与钢焊接的残余应力在垂直焊缝方向上呈梯度分布,最大值出现在硬质合金与焊缝界面处。本实验中,硬质合金碳的质量分数为5.45%时具有最佳的焊接性能。 相似文献
2.
研究了WC晶粒度对WC-10%Co硬质合金微观组织和性能的影响,讨论不同WC粒度对硬质合金烧结过程、组织结构和性能的影响作用。结果表明:烧结体收缩率随着WC粒度的增大先降低,后上升。随着WC粒度增大,硬质合金显微组织变粗,晶粒生长不规则,硬度也降低,而抗弯强度先降低后再增大。因此WC晶粒的粗细对硬质合金的性能有着重要的影响。 相似文献
3.
不同晶粒度硬质合金的磨削性能研究 总被引:2,自引:0,他引:2
本文通过磨削试验,从磨削功率、磨削比、磨削表面光洁度等方面研究了粗晶、细晶、超细晶粒三种含Co量相同的K类硬质合金的磨削性能。研究结果表明,上述三种硬质合金在各磨削参数相同的情况下,所消耗的磨削力、磨削能随硬质合金晶粒尺寸的增加而增大。同一砂轮对上述硬质合金的磨削比随晶粒尺寸的增加而增大。在磨料粒度与硬质合金粒度相当时,所加工表面的月。值随WC晶粒度的变粗而变差. 相似文献
4.
本文通过选用碳含量不同的WC原料配制成4组WC-22%Co高钴硬质合金,采用物理性能检测、光学金相等分析方法,对比研究了不同碳含量WC对WC-22%Co高钴硬质合金烧结后的性能和硬质相粒度的影响。结果表明:在所有方案中,原料WC中碳质量分数为5.97%时,合金抗弯强度最高,达到2 590 MPa,但合金金相组织不均匀,粗大WC晶粒数量较多,WC粒度分布最宽;随着原料WC碳含量的增加,合金金相组织趋于均匀化,粗大晶粒数量逐渐减少且WC晶粒粒径离差系数同步减小,并在WC碳质量分数为6.14%时WC晶粒粒径离差系数出现最小值,为0.475 7。 相似文献
5.
采用ANSYS有限元数值模拟软件,运用瞬态非线性分析的方法,模拟出以Ag—Cu—Ti为钎料的金刚石与硬质合金钎焊接头的焊后应力场,并预报出钎缝厚度对钎焊接头应力大小和分布的影响,从而分别得出焊后金刚石层、钎料层与硬质合金区域的应力场分布,通过对应力场彩云图以及数据组的综合分析,找到焊后应力集中的危险区域;在数控真空钎焊炉中进行钎焊试验,由于施加压力的不同,得出钎缝厚度不同的焊接试件。而后进行抗剪强度试验,得出了钎料层厚度并不是越厚越好,而是存在一个最佳值的规律,计算所得规律与试验结果基本吻合。 相似文献
6.
烧结温度对含钽双晶硬质合金组织和性能的影响 总被引:1,自引:0,他引:1
同时采用不同粒度WC原料制备WC-TaC-Co硬质合金,并在不同的温度下进行烧结。研究表明:合金主要由两相组成,晶粒大小相间。所测硬度、密度和矫顽磁力随温度升高先升后降,抗弯强度随烧结温度升高而略有升高,但变化不明显。烧结温度为1450℃保温1.5h时,合金的综合性能达到最优,维氏硬度(HV30)为1668.8,抗弯强度为988MPa,密度为14.87g/cm3,矫顽磁力为15.2kA/m,此时Ta元素对WC晶粒的抑制效果最佳,晶粒尺寸达到0.75μm±0.33μm。 相似文献
7.
有二种传统方法测定抛光和腐蚀了的硬质合金横截面,即线性截取法和Jefferies法。通过二种模拟试验,采用这些方法的一些缺点很明显。在第一个试验中,粗晶粒硬质合金中的粘结剂溶解,评估了单独碳化物晶粒的三维晶粒度,并且用二种传统方法将抛光的横截面进行了比较。结果表明这二种传统方法测定出的平均晶粒度相互非常不同,三维粒度也不同。通过扩大转换因子,可获得较好的相互关系。第二个试验包括含宽范围的二元分布的硬质合金的硬度测定和晶粒度测定。证明了以晶粒数为基的平均晶粒度与和物理性能之间不存在关系。从那些试验的结果,建议一种新的计算平均晶粒度的方法。新方法是以频率分布的平均体积(或质量)的计算为基础的。 相似文献
8.
《硬质合金》2015,(5):285-293
本文选用4种不同粒度的WC粉,采用典型硬质合金制备方法制备出4批普通合金样品,在4种WC粉中选两种不同粒度的WC粉按照一定的质量配比制备出4批双晶硬质合金样品,用LAMOS Master金相分析软件计算样品金相照片上的WC晶粒截面面积并进行升序排序并得出面积差曲线。结果表明,普通合金样品的面积差曲线无特征峰,双晶粒度样品有特征峰。特征峰的中间位置为粗细WC的分界点,用截线法测出的粗WC与细WC的平均晶粒度与样品所用WC粉对应普通合金样品的WC平均晶粒度一致。将双晶硬质合金样品的显微组织、粗细WC平均晶粒度、粗细WC颗粒数量比及WC粉质量比等数据建立双晶硬质合金的WC组织特征参数。 相似文献
9.
采用激光对304不锈钢薄板搭接缝进行软钎焊,并对钎缝组织与力学性能进行了研究.工艺试验结果表明,当激光束倾角为60°和离焦量为300 mm时,能够有效降低激光束的热输入,实现304不锈钢薄板搭接缝的无变形钎焊,填缝深度可达5 mm,钎缝外观成形光滑、饱满,颜色与母材相近,无需涂装.钎焊接头分为不锈钢母材区、钎缝区、不锈钢母材区3个区域,钎缝区和母材区的边界清晰且明显,钎缝组织连续致密,无气孔、裂纹等缺陷.钎缝显微组织主要由黑色固溶体相、大菱形块状白色相和短棒状白色相组成,分析认为3种相分别为锡基固溶体相、SnSb相和Cu6Sn5相.钎料和母材之间形成约1~2μm金属化合物FeSn2扩散层.钎缝的平均抗剪强度测试结果为39 MPa,能够满足不锈钢薄板搭接缝的工程应用. 相似文献
10.
设计了3种成分的AgCuMnNi钎料。3种钎料固液相线温度均处于750~792℃,钎料铸态组织主要由富Ag相与富Cu相组成。随着钎料中Ag含量的增加与Ni,Mn含量的减少,钎料铸态组织中富Ag相占比逐渐增加。在860℃,保温10 min工艺条件下,采用3种钎料真空钎焊YG6X/GH4169, Ag-3(AgCuNi4Mn8)钎料的钎焊接头平均抗拉强度为432.8 MPa,高于Ag-1(AgCuNi11.5Mn21.5)和Ag-2(AgCuNi4Mn11.5)钎料的钎焊接头平均抗拉强度。Ag-3钎料的钎焊接头微观组织中富Cu相与富Ag相分布均匀,而Ag-1与Ag-2中由于Mn含量较多,钎焊过程中生成了高Mn氧化区域,弱化了接头的力学性能。 相似文献
11.
《硬质合金》2015,(6):364-371
由于不同材料的热膨胀系数不同,涂层在冷却过程中可能因为热应力不同而产生裂纹,表面富粘结相的梯度硬质合金基体因粘结相含量高,韧性好,能有效吸收裂纹扩展时的能量,延长涂层刀具的使用寿命。为了研究WC晶粒度对梯度硬质合金的组织及性能的影响,制备了三种WC粒度的硬质合金。采用XRD和SEM对梯度硬质合金的相成分、微观组织进行了分析。实验结果表明,三种WC晶粒度的硬质合金表面均形成了梯度层。随着WC晶粒度的增大,梯度层厚度减小,抗弯强度和断裂韧性增大。三种梯度硬质合金表层显微硬度分布趋势相似。当WC晶粒度较小时,梯度硬质合金无梯度的合金芯部断裂形式均以沿晶断裂方式为主,随着WC晶粒度的增加,穿晶断裂方式增多;梯度表层出现了Co相变形和撕裂形貌,存在蜂窝状的韧性花样。 相似文献
12.
WC粒度分布对WC-Co硬质合金力学性能影响的模拟分析 总被引:1,自引:0,他引:1
本文旨在建立基于WC-Co硬质合金真实微观组织的力学性能预测有限元分析方法,进而分析WC颗粒粒度分布对微区变形和力学行为的影响。实验设计和制备了具有Co含量相同,WC晶粒分布均匀和非均匀的两种WC-Co硬质合金,并进行维氏硬度测试和用SEM进行组织观测。通过对合金组织的SEM形貌照片进行WC颗粒边界的重构,建立WC和Co两相真实组织的二维有限元模型。通过有限元模拟对两种合金的弹性模量、泊松比和强度等力学性能进行预测和微观变形机理分析。有限元模拟结果表明均匀合金强度高于非均匀合金,与实验测试的硬度所揭示的规律相吻合。对微观变形机理分析揭示了均匀合金应力分布更均匀是强度较高的主要内在机理,而WC/WC邻接界面的应力集中是弱化力学性能的主要机制。 相似文献
13.
本文选取钴含量分别为3%、8%、18%、26%的粗晶硬质合金混合料进行球磨,在球磨时间为15、16、17 h时取出混合料制成四组每组3批硬质合金样品,研究球磨时间对粗晶硬质合金WC晶粒尺寸分布及WC邻接度的影响,结果表明,同组粗晶硬质合金的WC晶粒尺寸分布曲线随着球磨时间的增加逐渐向左偏移,分布曲线的右支变得更陡,WC... 相似文献
14.
密切结合WC-Co硬质合金工业生产中的质量检测工作,采用JCXA-733型电子探针显微分析仪和3014型X射线衍射仪,对合金的微观组织结构与性能:从断口形貌、WC-Co合金的断裂行为、孔隙、夹杂物、η相的组织成分和结构等都做了较全面系统的分析和研究,实验表明合金断裂过程主要沿WC硬质相与Co粘结相界面断裂或通过Co粘结相断裂,很少是WC穿晶解理断裂,同时阐明了断裂源中的孔隙、夹杂物、η相是降低硬质合金断裂强度的重要结构因素,从而探讨了WC-Co合金断裂的机理。该分析研究为质量检测水平提高到一个新的台阶,对 相似文献
15.
WC-Co硬质合金的微观组织结构与性能的研究 总被引:2,自引:0,他引:2
密切结合WC-Co硬质合金工业生产中的质量检测工作,采用JCXA-733型电子探针显微分析仪和3014型X射线衍射仪,对合金的微观组织结构与性能:从断口形貌、WC-Co合金的断裂行为、孔隙、夹杂物、η相的组织成分和结构等都做了较全面系统的分析和研究,实验表明合金断裂过程主要沿WC硬质相与Co粘结相界面断裂或通过Co粘结相断裂,很少是WC穿晶解理断裂,同时阐明了断裂源中的孔隙、夹杂物、η相是降低硬质合金断裂强度的重要结构因素,从而探讨了WC-Co合金断裂的机理。该分析研究为质量检测水平提高到一个新的台阶,对保证和提高产品质量都具有实际意义。 相似文献
16.
17.
《硬质合金》2017,(1):14-20
硬质合金的平均晶粒度影响着合金的使用性能,而硬质相粒度分布对合金性能的影响较少报导。本文选用经典工艺制备的4批粘结相质量分数6%、平均晶粒度为1.6μm、不同WC晶粒离散度试样,1批网状合金试样,1批粘结相质量分数8%、平均晶粒度为1.6μm、WC晶粒高离散度试样,通过Palmqvist压痕实验测定其断裂韧性来研究WC晶粒离散度对硬质合金断裂韧性的影响。结果表明,经典试样WC晶粒离散系数由0.425 8增大至0.533 7时,断裂韧性由15.7 MPa·m~(1/2)降至11.6 MPa·m~(1/2),维氏硬度基本保持1 420 HV30左右;粘结相含量、平均晶粒度及维氏硬度相同的网状结构硬质合金,其WC离散系数为0.653 6时,Palmqvist压痕断裂韧性高达16.0 MPa·m~(1/2);粘结相质量分数为8%的试样,其WC离散系数为0.612 1,维氏硬度为1 350 HV30,断裂韧性仅为12.5 MPa·m~(1/2)。离散度小的硬质相分布及特别的微观结构设计都可以在不降低硬度的情况下提升合金的韧性。 相似文献
18.
WC-Co硬质合金的显微结构参数 总被引:7,自引:2,他引:7
通过X射线衍射分析 (XRD) ,扫描电镜 (SEM)体视学测量和磁性与密度测试 ,并依据碳化钨(WC)基合金维氏硬度HV与γ相平均自由程λ间的Hall Petch型关系式和HV的“混合物规则”进行验证 ,探讨了两相WC Co硬质合金显微结构参数间的定量关系。结果表明 ,γ相平均自由程λ与WC晶粒邻接度CWC 间存在反向对应关系 ,与γ相体积分数fγ 和WC平均晶粒尺寸LWC 间存在正向对应关系 :λ =1 0 5× 10 - 5·(1-CWC) 3 7=8 74× 10 - 2 ·(f- 1γ - 1) - 0 79·L0 79WC ,说明fγ 和LWC对λ~CWC关系的影响处在测量误差范围内 ,因而用CWC(或λ)、fγ 和LWC中任意两个参数都能准确表征两相WC Co硬质合金的结构特征 ;合金的比矫顽磁力HSC与γ相平均自由程λ间存在定量关系 :HSC=4 0 5× 10 - 7 λ。讨论了用磁性和密度测定值无损鉴定两相WC Co硬质合金显微结构参数的可行性。 相似文献
19.
采用粉末冶金制备技术,以粗WC粉末、Co粉和WC+Ni3Al预合金粉末为原料制备出WC-40vol%(Co—Ni,Al)硬质合金。利用扫描电镜和透射电镜研究了不同NbAl含量对WC-40vol%(Co—Ni3Al)硬质合金中WC晶粒形状的影响规律。结果表明:W在Co粘结相中的固溶度接近25.4wt%,而W在Ni,Al粘结相中的固溶度接近9.5wt%,随着NbAl含量的增加,粘结相对W的固溶度减小,合金中的WC晶粒圆钝和细小;WC晶粒表面上出现明显的台阶。相应的,延长烧结时间,WC—Co—Ni3Al硬质合金具有与WC—Co硬质合金相同的WC生长行为,WC-40vol%(Co—Ni3Al)硬质合金中的WC晶粒表面上的台阶处出现明显的刻面。 相似文献