首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic modulus of metallic orthopaedic implants is typically 6–12 times greater than cortical bone, causing stress shielding: over time, bone atrophies through decreased mechanical strain, which can lead to fracture at the implantation site. Introducing pores into an implant will lower the modulus significantly. Three dimensional printing (3DP) is capable of producing parts with dual porosity features: micropores by process (residual pores from binder burnout) and macropores by design via a computer aided design model. Titanium was chosen due to its excellent biocompatibility, superior corrosion resistance, durability, osteointegration capability, relatively low elastic modulus, and high strength to weight ratio. The mechanical and physical properties of 3DP titanium were studied and compared to the properties of bone. The mechanical and physical properties were tailored by varying the binder (polyvinyl alcohol) content and the sintering temperature of the titanium samples. The fabricated titanium samples had a porosity of 32.2–53.4 % and a compressive modulus of 0.86–2.48 GPa, within the range of cancellous bone modulus. Other physical and mechanical properties were investigated including fracture strength, density, fracture toughness, hardness and surface roughness. The correlation between the porous 3DP titanium-bulk modulus ratio and porosity was also quantified.  相似文献   

2.
Bone is a viscoelastic connective tissue composed primarily of mineral and type I collagen, which interacts with water, affecting its mechanical properties. Therefore, both the level of hydration and the loading rate are expected to influence the measured nanomechanical response of bone. In this study, we investigated the influence of three distinct hydration conditions, peak loads and loading/unloading rates on the elastic modulus and hardness of canine femoral cortical bone via nanoindentation. Sections from three canine femurs from multiple regions of the diaphysis were tested for a total of 670 indentations. All three hydration conditions (dry, moist and fully hydrated tissue) were tested at three different loading profiles (a triangular loading profile with peak loads of 600, 800 and 1000 μN at loading/unloading rate of 60, 80 and 100 μN/s, respectively; each test was 20 s in duration). Significant differences were found for both the elastic modulus and hardness between the dry, moist and fully hydrated conditions (p  0.02). For dry bone, elastic modulus and hardness values were not found to be significantly different between the different loading profiles (p > 0.05). However, in both the moist and fully hydrated conditions, the elastic modulus and hardness were significantly different under all loading profiles (with the exception of the moist condition at the 600- and 800-μN peak load). Given these findings, it is critical to perform nanoindentation of bone under fully hydrated conditions to ensure physiologically relevant results. Furthermore, this work found that a 20-s triangular loading/unloading profile was sufficient to capture the viscoelastic behavior of bone in the 600- to 1000-μN peak load range. Lastly, specific peak load values and loading rates need to be selected based on the structural region for which the mechanical properties are to be measured.  相似文献   

3.
《Composite Structures》1988,9(3):173-188
The characterisation of the mechanical properties of an orthotropic composite material generally requires nine interdependent elastic constants: three Young's moduli, three shear moduli and three Poisson's ratios. In most papers it is the practice to quote only two orthogonal axial moduli, a shear modulus and a Poisson's ratio in the plane of the laminate. However, the value of Poisson's ratio is a function of the orientation of the loading axis relative to the principal axis of the reinforcement fibres, both in and through the plane of the laminate. In an earlier paper, the correlation of experimental and theoretically predicted Poisson's ratios was reported around the angles in the plane of the laminate. Both unidirectional and woven roving fibreglass panels were tested. Accurate prediction of Poisson's ratio was shown to be critically dependent on the value of shear modulus used. This paper reports an extension of the previous work to consider the through-plane properties and will examine the results in the context of the Lempriere constraints.  相似文献   

4.
东方龙虱鞘翅内表皮层及断面硬度和弹性模量   总被引:1,自引:1,他引:0  
研究了东方龙虱去除外表皮后的鞘翅内表皮层及其鞘翅断面的力学性能。利用纳米压痕仪测得鞘翅内表皮层硬度和弹性模量分别为(0.065±0.007) GPa和(0.704±0.013) GPa, 均远远小于鞘翅外表皮层的硬度和弹性模量。鞘翅断面的力学性能测试结果表明: 在鞘翅横断面上, 靠近联接部位的硬度和弹性模量略大于鞘翅中部和外侧; 而在鞘翅纵向断面上, 鞘翅中部的硬度和弹性模量明显大于头部和尾部, 其断面力学性能呈现一定的分布规律。   相似文献   

5.
目的 基于不同变形机制的负泊松比结构优化设计新型复合多孔结构样件,增加力学性能的调控维度,以满足人体骨低弹性模量的匹配要求。方法 用内凹多边形替代手性结构的圆环,以获得新型的复合胞元结构。利用选区激光熔化成形技术制备负泊松比多孔人工骨样件,通过压缩实验揭示胞元结构类型、结构参数、孔隙率对屈服强度、弹性模量的影响规律,评测不同结构样件与人体骨间的力学性能匹配程度。结果 当孔隙率为65%~85%时,复合结构样件的成形质量、力学性能基本介于手性结构的和内凹结构的之间,且与孔隙率密切相关。手性结构、内凹结构和复合结构的弹性模量分别为2.39~4.64、1.12~3.77、1.01~3.47 GPa,屈服强度分别为65.19~223.06、45.25~195.81、26.54~143.58MPa。复合结构的弹性模量随环径和内凹角度的增大而减小。当孔隙率为75%时,环径由2.4 mm变至2.0 mm,弹性模量由2.651 GPa降低至2.082 GPa。当内凹角度由85°变至65°时,弹性模量则由3.566GPa降低至1.982GPa。结论 复合胞元结构可以融合材料特性,增加调控维度,进而匹配人工...  相似文献   

6.
发展了一种细观力学有限元分析方法——拟真实的参数化双随机分布模型, 该模型综合考虑了纤维增强树脂基复合材料的真实微结构特点和纤维单丝综合力学性能测试结果的离散性特征, 模拟了复合材料中纤维排列和强度分布的随机性。借助移动窗口法研究了该参数化双随机分布模型的可靠性, 确定了其代表性体积单元的尺寸。基于能量法原理推导了单向复合材料的弹性模量预测公式, 结合能量法和渐进失效分析方法, 利用该细观力学有限元方法分别预测了单向纤维增强树脂基复合材料T300/5228的弹性模量和强度性能。数值模拟结果和大部分试验结果吻合良好, 表明发展的细观力学有限元方法能够较好地预测复合材料的力学性能。   相似文献   

7.
Absence of fibrillin 2 (Fbn2), a non-collagenous bone protein, causes a connective tissue disorder called congenital contractural arachnodactyly (CCA) and has been associated with decreased bone mineral density. Nanoindentation and Raman microspectroscopy have been used to compare the mechanical and chemical properties of cortical bone from femora of Fbn2−/− deficient mice and their wild-type controls (Fbn2+/+). It was found that Fbn2−/− bones have significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, especially in the mid-cortical section. The Raman analysis showed little difference with genotype except for a decrease in type-B carbonate substitution in the endosteal region of Fbn2−/− bones. The results indicate that Fbn2 plays a direct role in determining the mechanical properties of bone.  相似文献   

8.
One of the most vital criteria for hip implant longevity is bony ingrowth that would anchor the implant to the bone. However, motion between the implant and surrounding bone (called micromotion) can hamper this, eventually leading to pain, loss of motion, damage to the bone, and eventual revision of the surgery. The objective of this research was to determine how mechanical properties; namely Young’s modulus, affects micromotion and failure in the surrounding bone. Mathematical models were used, along with finite element analysis, to determine if elastic modulus played a role in both micromotion and bone failure. However, by increasing the modulus of the implant, the bone becomes susceptible to stress shielding. Therefore, it is important to optimize implants for both stress shielding and micromotion.  相似文献   

9.
This communication describes the preparation, characterization and properties of biodegradable poly(butylene succinate) (PBS)/multi-walled carbon nanotubes (MWCNTs) nanocomposite. Nanocomposite was prepared by melt-blending in a batch mixer and the amount of MWCNTs loading was 3 wt%. State of dispersion-distribution of the MWCNTs in the PBS matrix was examined by scanning and transmission electron microscopic observations that revealed homogeneous distribution of stacked MWCNTs in PBS matrix. The investigation of the thermomechanical behavior was performed by dynamic mechanical thermal analysis. Results demonstrated substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.64 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 88% in the value of the elastic modulus. The tensile modulus and thermal stability of PBS were moderately improved after nanocomposite preparation with 3 wt% of MWCNTs, while electrical conductivity of neat PBS dramatically increased after nanocomposite formation. For example, the in plane conductivity increased from 5.8 x 10(-9) S/cm for neat PBS to 4.4 x 10(-3) for nanocomposite, an increase of 10(6) fold in value of the electrical conductivity.  相似文献   

10.
The compressive mechanical properties of cement asphalt mortars (CAMs) with varied bitumen-cement ratio (B/C) were studied under different temperatures, in order to reveal the susceptibility of mechanical properties to temperature. Results indicate that the compressive strength and the elastic modulus generally increase with a decrease in temperature for all tested CAMs. The quantitative evaluation of the temperature dependence of the strength and the elastic modulus using defined temperature-sensitivity factors is proposed and validated by the test results, which show that the mechanical properties of those CAMs with higher B/C have greater temperature sensitivity. For a given CAM, the temperature-sensitivity factor of the strength is larger than that of the elastic modulus. The temperature-sensitivity factors enable estimating the compressive strength and the elastic modulus of CAMs at selected temperatures from the tested values at a reference temperature, such as room temperature, by using the proposed equations. The relative elastic modulus is found to be in direct proportion to the square root of the relative compressive strength at a selected temperature, i.e. $ E_{\text{r}} \propto \sqrt {\sigma_{\text{pr}} } $ .  相似文献   

11.
The enhancement of mechanical properties by the use of nanoclay platelets in epoxy resin has been extensively investigated through numerous experimental techniques recently. Elastic modulus was obtained mainly from the tensile test of bone-like nanoclay/epoxy specimens. The results from the tensile test have only showed the globalized mechanical properties of composites and their localized elastic modulus distribution has been neglected. Despite the orientation and the degree of exfoliation of nanoclay platelets inside nanoclay/epoxy composites, the localized elastic modulus is important for the understanding of the distribution of agglomerations of nanoclay platelets. The elastic modulus of nanoclay/epoxy composite samples made under different sonication temperatures would be examined by nanoindentation to compare their localized mechanical behaviors. Scanning electron microscopy (SEM) would also be employed to study the distribution of the nanoclay clusters throughout the composites. The results showed that the elastic modulus varied throughout the composites and the nucleation theory of clusters was modified to explain the behavior of nanoclay agglomerations under different sonication temperatures in which the viscosity of the epoxy resin was varied. The gravitational effect was significant to cause the non-uniform distributions of nanoclay clusters at low sonication temperature.  相似文献   

12.
Graphene foam (GF), a 3‐dimensional derivative of graphene, has received much attention recently for applications in tissue engineering due to its unique mechanical, electrical, and thermal properties. Although GF is an appealing material for cartilage tissue engineering, the mechanical properties of GF‐tissue composites under dynamic compressive loads have not yet been reported. The objective of this study is to measure the elastic and viscoelastic properties of GF and GF‐tissue composites under unconfined compression when quasi‐static and dynamic loads are applied at strain magnitudes below 20%. The mechanical tests demonstrate a 46% increase in the elastic modulus and a 29% increase in the equilibrium modulus after 28‐days of cell culture as compared to GF soaked in tissue culture medium for 24 h. There is no significant difference in the amount of stress relaxation, however, the phase shift demonstrates a significant increase between pure GF and GF that has been soaked in tissue culture medium for 24 h. Furthermore, the authors have shown that ATDC5 chondrocyte progenitor cells are viable on graphene foam and have identified the cellular contribution to the mechanical strength and viscoelastic properties of GF‐tissue composites, with important implications for cartilage tissue engineering.
  相似文献   

13.
砷化镓因其良好的光电特性被广泛应用于电子与半导体领域, 为推动砷化镓解理加工技术, 对砷化镓材料力学特性的各向异性进行计算并分析。本研究对砷化镓各个晶面之间的夹角、面间距、原子的密度等结构参数进行计算, 基于广义胡克定律结合压痕实验, 分析砷化镓材料表层弹性模量、泊松比、剪切模量、硬度、断裂韧性等力学特性在{100}晶面沿不同晶向力学性能的变化规律。结果表明: 砷化镓不同晶面间结构参数的不同是导致砷化镓力学特性呈现各向异性的主要原因; 砷化镓在{100}晶面上弹性模量、泊松比、剪切模量的各向异性均呈现出周期性变化, 且{100}晶面的剪切模量为恒值59.4 GPa; 砷化镓{100}晶面硬度的各向异性变化幅度较小, 断裂韧性变化幅度较大, 最小值为0.304 MPa·m1/2, 位于<110>晶向, 确定<110>晶向是裂纹最容易扩展的晶向。  相似文献   

14.
通过快速冻融试验,研究了三种不同冻融介质(水、3.5wt%NaCl、飞机除冰液)对混凝土质量损失、动弹模量以及力学性能的影响,比较了三种冻融介质对混凝土损伤程度的大小,分析了混凝土相对动弹性模量与相对剩余抗压强度和相对剩余抗折强度之间的关系,基于相对动弹性模量建立了相对剩余抗压强度和相对剩余抗折强度衰减方程。结果表明:3.5wt%NaCl溶液对混凝土的损伤度要远大于单纯水冻融循环对混凝土的损伤度,飞机除冰液对混凝土冻融损伤具有抑制作用;混凝土抗压、抗折强度以及相对动弹性模量随着冻融循环次数的增加而降低;三种冻融介质下混凝土抗压、抗折强度损失率大小关系为:3.5wt%NaCl水飞机除冰液;相对动弹性模量与相对剩余抗压强度、相对剩余抗折强度相关性好,可以通过测定混凝土相对动弹性模量来评估混凝土相对剩余强度。  相似文献   

15.
Currently, the bone-repair biomaterials market is dominated by high modulus metals and their alloys. The problem of stress-shielding, which results from elastic modulus mismatch between these metallic materials and natural bone, has stimulated increasing research into the development of polymer-ceramic composite materials that can more closely match the modulus of bone. In this study, we prepared poly(l-lactic acid)/hydroxyapatite/poly(ε-caprolactone) (PLLA/HA/PCL) composites via a four-step process, which includes surface etching of the fiber, the deposition of the HA coating onto the PLLA fibers through immersion in simulated body fluid (SBF), PCL coating through a dip-coating process, and hot compression molding. The initial HA-coated PLLA fiber had a homogeneous and continuous coating with a gradient structure. The effects of HA: PCL ratio and molding temperature on flexural mechanical properties were studied and both were shown to be important to mechanical properties. Mechanical results showed that at low molding temperatures and up to an HA: PCL volume ratio of 1, the flexural strain decreased while the flexural modulus and strength increased. At higher mold temperatures with a lower viscosity of the PCL a HA: PCL ratio of 1.6 gave similar properties. The process successfully produced composites with flexural moduli near the lower range of bone. Such composites may have clinical use for load bearing bone fixation.  相似文献   

16.
Effects of drying on the measurement of mechanical properties of bone by nanoindentation methods have been examined. Tests were conducted to measure the elastic modulus and hardness of two cross-sectional cortical specimens obtained from adjacent areas of bovine femur. One specimen was thoroughly dried in air prior to testing while the other was stored in deionized water. The properties of osteons and interstitial lamellae showed statistically significant differences (plt; 0.0001) and were therefore investigated separately. Drying was found to increase the elastic modulus by 9.7% for interstitial lamellae and 15.4% for osteons. The hardness was also found to increase by 12.2% for interstitial lamellae and 17.6% for osteons.  相似文献   

17.
Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable mechanical properties and biochemical compatibility (or bio-inertness). However, current bio-titanium alloys still possess too high an elastic modulus compared with that of the bone, which can lead to premature failure of the implant. Here, a theoretical methodology for the design and development of low modulus Ti alloys and/or structures is provided by means of electronic structural calculations using the discrete variational cluster method (DVM). The preliminary study concentrated on two β-Ti atomic clusters consisting of 15, and 27 atoms, respectively. The binding energies between titanium and various alloying atoms within the clusters were first calculated, from which strength and modulus were then estimated. The results of the calculation suggested that Nb, Mo, Zr and Ta were suitable alloying elements for β-type titanium alloys, capable of enhancing the strength and reducing the modulus of the materials.  相似文献   

18.
Nanosilica/poly(methyl methacrylate) (PMMA) composites are used to improve the mechanical properties of neat PMMA polymer. In order to obtain superior mechanical properties, it is essential to achieve good bonding between the SiO2 nanoparticles and the PMMA matrix, which is typically achieved by coating silica nanoparticles with silane coupling agents. In this study, conventional and supercritical coating methods were investigated together with their influence on the mechanical properties of the obtained nanosilica/PMMA composites. The results indicate advantageous properties of nanosilica modified in the supercritical phase of carbon dioxide and ethanol in terms of particle size distribution, amount of coated silane, and dispersion in the PMMA matrix. Careful dispersion of the starting silica nanoparticles in ethanol at low temperatures in order to obtain a nanosilica sol plays an important role in deagglomeration, dispersion, and the coating process. The resulting nanosilica/PMMA composite containing nanoparticles obtained by supercritical processing of the nanosilica sol showed an increase in hardness by 44.6% and elastic modulus by 25.7% relative to neat PMMA, as determined using the nanoindentation technique. The dynamic mechanical analysis reveals that addition of nanoparticles as nanosilica sol and nanosilica gel enhances composite storage modulus by about 54.3 and 46.5% at 40 °C. At the same temperature, incorporation of modified silica nanoparticles with conventional method leads to an increase of 15.9% for the storage modulus, probably due to a large silica particle size and lower silane content in this sample.  相似文献   

19.
骨组织主要由有机相和矿物质相间排列而成,其显微组织结构与纤维增强材料相似。基于矿化程度构建三种胶原微纤维模型,以原胶原分子和有机交联键为出发点,综合探索有机相对微纤维力学性能的作用机制,再与文献数据进行对照验证。数值结果表明:随着矿化程度的加深,微纤维模型的刚度值和塑性趋势均显著上升。原胶原分子的收缩会导致其弹性模量上升,韧性明显下降。交联键数量增多会提高骨组织的力学性能,也增大骨组织的脆性。研究结果有助于揭示骨组织活性成分和微观结构对其力学性能的影响,为骨组织修复材料的开发提供理论依据。  相似文献   

20.
Functionally graded cellular structures such as bio-inspired functionally graded materials for manufacturing implants or bone replacement, are a class of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. A gradual increase in cell size distribution, can impart many improved properties which may not be achieved by having a uniform cellular structure.The material properties of functionally graded cellular structures as a function of density gradient have not been previously addressed within the literature. In this study, the finite element method is used to investigate the compressive uniaxial and biaxial behavior of functionally graded Voronoi structures. Furthermore, the effect of missing cell walls on its overall mechanical (elastic, plastic, and creep) properties is investigated.The finite element analysis showed that the overall effective elastic modulus and yield strength of structures increased by increasing the density gradient. However, the overall elastic modulus of functionally graded structures was more sensitive to density gradient than the overall yield strength. The study also showed that the functionally graded structures with different density gradient had similar sensitivity to random missing cell walls. Creep analysis suggested that the structures with higher density gradient had lower steady-state creep rate compared to that of structures with lower density gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号