首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anoxic treatment of phenolic wastewater in sequencing batch reactor   总被引:5,自引:0,他引:5  
Studies were conducted on the anoxic phenol removal using granular denitrifying sludge in sequencing batch reactor at different cycle lengths and influent phenol concentrations. Results showed that removal exceeded 80% up to an influent phenol concentration of 1050 mg/l at 6 h cycle length, which corresponded to 6.4 kg COD/m3/d. Beyond this, there was a steep decrease in phenol and COD removal efficiencies. This was accompanied by an increase in nitrite concentration in the effluent. On an average, 1 g nitrate-N was consumed per 3.4 g phenol COD removal. Fraction of COD available for sludge growth was calculated to be 11%.  相似文献   

2.
Phenol biodegradation and its effect on the nitrification process   总被引:2,自引:0,他引:2  
Amor L  Eiroa M  Kennes C  Veiga MC 《Water research》2005,39(13):2915-2920
Phenol biodegradation under aerobic conditions and its effect on the nitrification process were studied, first in batch assays and then in an activated sludge reactor. In batch assays, phenol was completely biodegraded at concentrations ranging from 100 to 2500 mg l(-1). Phenol was inhibitory to the nitrification process, showing more inhibition at higher initial phenol concentrations. At initial phenol concentrations above 1000 mg l(-1), the level of nitrification decreased. In the activated sludge reactor, the applied ammonium loading rate was maintained at 140 mg N-NH(4)(+)l(-1)d(-1) (350 mg N-NH(4)(+)l(-1)) during the operation time. However, the applied organic loading rate was increased stepwise from 30 to 2700 mg COD l(-1)d(-1) by increasing the phenol concentration from 35 up to 2800 mg l(-1). High phenol removal efficiencies, above 99.9%, were maintained at all the applied organic loading rates. Ammonium removal was also very high during the operation period, around 99.8%, indicating that there was no inhibition of nitrification by phenol.  相似文献   

3.
《Water research》1996,30(9):1979-1984
Reverse osmosis (RO) and physical/chemical technology were evaluated for treatment of neutralized spent acid effluent (seepage) containing high concentration levels of TDS (7500 mg/l), Ca (400 mg/l), CrVI (42 mg/l), nitrate-nitrogen (827 mg/l), ammonia-nitrogen (33 mg/l), fluoride (13 mg/l), phenolics (45 mg/l) and COD (620 mg/l). The calcium concentration level in the seepage could be reduced from approximately 400 to 5 mg/l with soda ash softening. Initial permeate flux (feed and bleed system, 85% water recovery) was 278 l/m2·d. Permeate flux, however, dropped rapidly in the beginning of the run and then remained approximately constant to the end of the run. However, chemical cleaning of the membranes was necessary to maintain flux. The TDS of the RO feed could be reduced in one case from 34,253 to 1560 mg/l (95.5% removal) at 85% water recovery. Nitrate and ammonia nitrogen were reduced from 2691 and 103 mg/l to 414 (84.6% removal) and 15 mg/l (85.3% removal), respectively. ChromiumVI and fluoride were reduced from 183 and 90 mg/l to 0.38 (99.8% removal) and 2.8 mg/l (96.9% removal), respectively. COD removals varied between 60 and 80%. No phenolics, however, could be removed from the feed (approximately 32 mg/l) with the cellulose acetate RO membranes. Phenolics, however, could be effectively removed (<0.2 mg/l) from the RO permeate with hydrogen peroxide oxidation or ion-exchange treatment. Preliminary test work has shown that it should be possible to treat the seepage effectively with RO for pollution control, effluent volume reduction and water recovery. Capital costs for a 600 kl/d plant for lime softening, RO and oxidation equipment are estimated at U.S. $58,000, U.S. $350,000 and U.S. $87,500, respectively.  相似文献   

4.
The effect of the additive, polyethylene glycol (PEG), on the horseradish peroxidase (HRP) catalysed removal of phenol from wastewater has been studied over the phenol concentration range of 1–10 mM (0.1–1.0 g/l). The optimum pH, HRP concentration, PEG concentration and the molar ratio of hydrogen peroxide and phenol have been investigated in the presence of PEG at room temperature in order to achieve the maximum phenol removal efficiency with the minimum cost. The effect of concentrations of HRP and PEG on reaction time was also investigated. Experimental results showed that the addition of PEG had significant protective effect on the activity of HRP. The amount of peroxidase required was reduced 40- and 75-fold less than that required without PEG for 1 and 10 mM phenol solutions, respectively. The higher the phenol concentration, the more effective was the addition of PEG. In the presence of PEG, the optimum pH is 8.0 and the optimum molar ratio of hydrogen peroxide and phenol is around 1.0. The minimum doses of HRP and PEG required for at least 95% removal were determined for several phenol concentrations and two empirical models are proposed to predict the minimum HRP and PEG doses required for 95% removal over the entire phenol concentration range of 1–10 mM. Under the optimum reaction conditions described above, the reaction times for at least 95% removal from 1 and 10 mM phenol solutions were 5 and 3 h, respectively. An increase in HRP concentration significantly reduced the reaction time; however, an increase in PEG concentration showed negligible influence.  相似文献   

5.
Attempts were made for removing ammonia from synthetic wastewater under the presence of phenol, which is inhibitory to nitrification, by using a single-stage activated sludge process with cross-flow filtration. Activated sludge biomass which had been acclimated with phenol for over 15 years was used for the inoculum, and synthetic wastewater was continuously supplied to the process retaining biomass at 8000 mg VSS l(-1). Phenol was completely removed, and ammonia was simultaneously nitrified to nitrate; nitrification rate reached 200 mg N l(-1) d(-1) when phenol was removed at a rate up to 300 mg l(-1) d(-1). It was observed that 0-13% of the ammonia was removed via denitrification. Intermittent aeration enhanced the denitrification rate to 160 mg N l(-1) d(-1) by utilizing phenol. and approximately 24% of the denitrified nitrogen was recovered as nitrous oxide. Methanol, which is the most commonly used electron donor in conventional nitrogen removal processes, did not enhance the denitrification rate of the phenol-acclimated activated sludge used in this study, however phenol did. The results suggest that this process potentially works as a space- and energy-saving nitrogen removal process by utilizing substances inhibitory to nitrifiers as electron donors for denitrification.  相似文献   

6.
Eiroa M  Vilar A  Amor L  Kennes C  Veiga MC 《Water research》2005,39(2-3):449-455
Formaldehyde and phenol biodegradation during the denitrification process was studied at lab-scale, first in anoxic batch assays and then in a continuous anoxic reactor. The biodegradation of formaldehyde (260 mgl(-1)) as single carbon source and at phenol concentrations ranging from 30 to 580 mgl(-1) was investigated in batch assays, obtaining an initial biodegradation rate around 0.5g CH(2)OgVSS(-1)d(-1). With regard to phenol, its complete biodegradation was only observed at initial concentrations of 30 and 180 mgl(-1). The denitrification process was inhibited at phenol concentrations higher than 360 mgl(-1). Studies were also done using a continuous anoxic upflow sludge blanket reactor in which formaldehyde removal efficiencies above 99.5% were obtained at all the applied formaldehyde loading rates, between 0.89 and 0.14g COD (CH(2)O)l(-1)d(-1). The phenol loading rate was increased from 0.03 to 1.3g COD (C(6)H(6)O)l(-1)d(-1). Phenol removal efficiencies above 90.6% were obtained at phenol concentrations in the influent between 27 and 755 mgl(-1). However, when the phenol concentration was increased to 1010 mgl(-1), its removal efficiency decreased. Denitrification percentages around 98.4% were obtained with phenol concentrations in the influent up to 755 mgl(-1). After increasing phenol concentration to 1010 mgl(-1), the denitrification percentage decreased because of the inhibition caused by phenol.  相似文献   

7.
The effects of discontinuous chlorination on the characteristics of the water in a pilot drinking water distribution network were investigated. The release or consumption of organic matter (as dissolved organic carbon, DOC) following chlorination and non-chlorination periods were estimated, as were changes in bacterial cell production. In each unchlorinated network 0.3 mg DOCl(-1) was consumed and the average cell production was approximately 1.3 x 10(5) cells ml(-1). In discontinously chlorinated networks (chlorine treatment: 3.3 mg Cl2l(-1), chlorine residual: 0.1 mg Cl2l(-1)) the DOC release (DOCout-DOCin) was between 0.1 and 0.2 mg Cl(-1). Biomass production (cells(out)-cells(in)) during this chlorination period was lower (approximately 2 x 10(4) cells ml(-1)). The delay before DOC was released in chlorinated networks appeared to be less than 24 h, which corresponds to one hydraulic residence time. Likewise, when chlorination was stopped, 24 h or less were required before an efficient DOC removal was resumed. When chlorination was prolonged the observed release of DOC was progressively reduced from 0.2 mg l(-1) to zero, thus after 6 weeks of continuous chlorination the DOCin was equivalent to the DOCout.  相似文献   

8.
This study investigated the biodegradability of the herbicides isoproturon and 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors (SBRs). Two laboratory-scale (2L liquid volume) SBRs were employed: one reactor performing under aerobic and the other under anaerobic conditions. The aerobic SBR was operated at an ambient temperature (22+/-2 degrees C), while the anaerobic SBR was run in the lower mesophilic range (30+/-2 degrees C). Each bioreactor was seeded with a 3:1 mixture (by weight) of fresh sludge and biomass that had been previously exposed to both herbicides. The effect of herbicide concentration on either treatment process was explored at a hydraulic retention time (HRT) of 48 h, using glucose as a supplemental carbon substrate. Although no isoproturon degradation was observed in either system during the study, complete 2,4-D removal occurred after an acclimation period of approximately 30 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic reactor achieved complete 2,4-D utilization at feed concentrations up to 500 mg/L. A further increase to 700 mg/L, however, proved to be inhibitory since 2,4-D biodegradation was negligible. On the other hand, the anaerobic SBR was able to degrade 120 mg/L of 2,4-D, which corresponds to 40% of the maximum feed concentration applied. Moreover, glucose was consumed first throughout the experiment in a sequential utilization pattern relating to 2,4-D, with biodegradation of both substrates following closely first-order kinetics.  相似文献   

9.
Diez MC  Pouleurs D  Navia R  Vidal G 《Water research》2005,39(14):3239-3246
The effect of ethylenediaminetetracetic acid (EDTA) and Fe-EDTA complex on synthetic totally chlorine-free (TCF) effluent degradability in batch and continuously operating reactors was evaluated. Under batch treatment, the addition of EDTA and Fe-EDTA complex was studied in the range of 80 to 320 mg l(-1). Under continuously operated reactors, the Fe-EDTA complex concentration varied from 20 to 80 mg l(-1), and the hydraulic retention time (HRT) varied from 48 to 24 h. Sludge oxygen uptake rate (OUR) and chemical oxygen demand (COD) removal decreased when EDTA concentration increased in the influent under batch treatment; however, this inhibitory effect was reduced by the addition of Fe-EDTA complex. Without the addition of EDTA, COD removal decreased from 71% to 8%. The most efficient EDTA removal treatment (almost 10%) was the treatment of 80 mg l(-1) Fe-EDTA. Under continuously operated reactors, COD removal was greater than 57% in the synthetic TCF effluent with a Fe-EDTA concentration that varied from 20 to 80 mg l(-1); however, EDTA removal was lower than 25% in all cases. Synthetic TCF effluent with a Fe -EDTA concentration higher than 80 mg l(-1) could not be treated by the activated sludge treatment due to EDTA's inhibitory effect on the sludge.  相似文献   

10.
Removal of organic matter from water by PAC/UF system   总被引:21,自引:0,他引:21  
Tomaszewska M  Mozia S 《Water research》2002,36(16):4137-4143
The laboratory-scale ultrafiltration (UF) experiments were conducted to determine the effect of the presence of powdered activated carbon (PAC) on the UF process performance, in terms of flux decline and the possibilities of membranes cleaning during backwashing. Poly(vinylidene fluoride) membranes formed by the phase inversion technique were used in the UF experiments. A model solution was prepared as a mixture of humic acids (HA) and phenol in concentration of 10 and 1 mg l(-1), respectively. Commercial powdered activated carbons CWZ 11 and CWZ 30 (Gryfskand Sp. z o. o., Hajnówka, Poland) were used as the adsorbents. PAC dosage was in the range of 10-100 mg PAC l(-1). The process was carried out in the cross-flow system. It was found that PAC addition to the distilled water leads to a small drop in the permeate flux, regardless of PAC dose and its type. Although PAC particles are too large to block the membrane pores inside, they deposit on the membrane surface and partially can plug the surface pores. The experimental results demonstrate that the backwashing process applied in combined PAC/UF system was especially effective when PAC dosages were <20mg PAC l(-1). However, a similar permeate flux was maintained for all carbon dosages used and reached the value of about 1 m3 m(-2) d(-1). Moreover, no further drop in the permeate flux for PAC addition to the solution containing foulants (HA) was observed. Effectiveness of the removal of HA and phenol from the model solutions was also investigated. In the PAC/UF system HA were removed in about 90%, whereas the complete removal of phenol was achieved for PAC dosage equal to 100 mg l(-1).  相似文献   

11.
Biodegradation kinetics of 4-nitrophenol (4NP) was investigated in a lab-scale sequencing batch reactor fed with the compound as the sole carbon source. The experimental results showed that complete 4NP removal can be easily achieved with acclimatized biomass, even if an inhibition kinetics is observed; furthermore, an improvement in the removal kinetics is obtained if the substrate concentration peak, reached in the reactor at the end of the filling time, is maintained to quite a low value. Both long feed phase and high biomass concentration are effective in reducing the substrate concentration peak and then improving the process efficiency. Kinetic test data are well correlated by the Haldane equation, with a saturation constant Ks and an inhibition constant KI, of 17.6 and 30.7 (mg l(-1) 4NP), respectively, whereas the maximum removal rate was in the range of 3.3-8.4 (mg 4NP mg VSS(-1) d(-1)) depending on the substrate concentration peak reached in the reaction phase.  相似文献   

12.
Tannery effluent as a carbon source for biological sulphate reduction   总被引:1,自引:0,他引:1  
Boshoff G  Duncan J  Rose PD 《Water research》2004,38(11):2651-2658
Tannery effluent was assessed as a carbon source for biological sulphate reduction in a pilot-scale upflow anaerobic sludge blanket (UASB), stirred tank reactor (STR) and trench reactor (TR). Sulphate removals of between 60-80% were obtained in all three reactors at total sulphate feed levels of up to 1800 mg l(-1). Sulphate removal in the TR (400-500 mg SO4 l(-1) day(-1)) and UASB (up to 600 mg SO4 l(-1) day(-1)) were higher than those obtained in the STR (250 mg SO4 l(1) day(-1)). A change in operation mode from a UASB to a STR had a large impact on chemical oxygen demand (COD) removal efficiencies. COD removal rates decreased by 25% from 600-700 mg COD l(-1) day(-1) to 200-600 mg COD l(-1) day(-1). The TR had an average COD removal rate of 500 mg COD l(-1) day(-1). Large quantities of sulphide were produced in the reactors (up to 1500 mg l(-1)). However due to the elevated pH in the reactor, only a small amount was in the form of H2S and thus the odour problem normally associated with biological sulphate reduction was not present.  相似文献   

13.
《Water research》1996,30(2):357-363
Degradation of pentachlorophenol (PCP) by Arthrobacter strain ATCC 33790 naturally immobilized on glass beads in a column was studied. PCP was removed from mineral salts medium 4–5 d after inoculation of the column with PCP-acclimated cells grown in batch culture. Adherence to the glass occurred with production of extracellular polymer. The laboratory reactor operated without aseptic precaution for over 300 d employing a feed containing 12–366 mg/l PCP as the predominant carbon source. Transient studies were done with both ammonia and nitrate in the feed. With ammonia in the feed the system lost its ability to respond effectively to step increases in PCP feed concentration from 12–170 mg/l within 4 months. After 6 months, even at very low flow rate, the column was unable to efficiently remove PCP after 2 abrupt increases in hydraulic load. The presence of 120 mg/l nitrite in the effluent indicated that nitrification caused deterioration in column performance. Replacement of the ammonia in the feed with nitrate reestablished PCP removal efficiency. Effluent concentrations were typically less than 1 mg/l with 20 mg/l in the feed. In transient studies the amplitude of response to 5 step increases in feed concentration of 20–150 mg/l decreased in time from 91.5 to 11 mg/l. The column responded well to a step increase from 20 to 366 mg/l but was stunned following a subsequent step change from 20 to 1000 mg/l.  相似文献   

14.
Gadekar S  Nemati M  Hill GA 《Water research》2006,40(12):2436-2446
Aqueous phase biooxidation of sulphide by the novel sulphide-oxidizing bacterium Thiomicrospira sp. CVO was studied in batch and continuous systems. CVO was able to oxidize sulphide at concentrations as high as 19 mM. Sulphide biooxidation occurred in two distinct phases, one resulting in the formation of sulphur and possibly other dissolved sulphur compounds rather than sulphate, followed by sulphate formation. The specific growth rate of CVO in the first and second phases were 0.17-0.27 and 0.04-0.05 h(-1), respectively. Nitrite accumulated in the culture during the first phase and was consumed during the second phase. The composition of end-products was influenced by the ratio of sulphide to nitrate initial concentrations. At a ratio of 0.28, sulphate represented 93% of the reaction products, while with a ratio of 1.6 the conversion of sulphide to sulphate was only 9.3%. In the continuous bioreactor, complete removal of sulphide was observed at sulphide volumetric loading rates as high as 1.6mM/h (residence time of 10h). Overall sulphide removal efficiency decreased continuously upon further increases in volumetric loading rate. However, the volumetric removal rate increased until a maximum value of 2.4mM/h was obtained at a loading rate of 3.2mM/h. The corresponding sulphide conversion and residence time were 76% and 5.6h, respectively. As expected from the high ratio of sulphide to nitrate loading rates (1.7-1.9 mM/h), no sulphate was formed in the continuous reactor. Using the experimental data the value of maximum specific growth rate, saturation constant, decay coefficient, maintenance coefficient and yield were determined to be 0.36 h(-1), 1.99 mM sulphide, 0.0014 h(-1), 0.078 mmol sulphide/mg ATPh and 0.018 mg ATP/mmol sulphide, respectively.  相似文献   

15.
A pure culture of Thiothrix strain CT3 has been aerobically cultured under periodic acetate feeding in a Sequencing Batch Reactor (SBR) at volumetric organic load rate of 0.12gCODL(-1)d(-1). Two different culture residence times (12d or 20d) were adopted as well as two different feed frequencies (1 and 4d(-1), for each culture residence time), the volumetric organic load rate being the same under all conditions. The transient response of the microorganism to the periodic acetate feed was investigated through batch tests with biomass withdrawn from the SBR, as function of the different SBR operating conditions. In all tested conditions, a quick transient response to the acetate spike was observed with fast increase of acetate uptake rate (ranging from 71 to 247mgCODgCOD(-1)h(-1)). This transient response was mainly due to acetate storage in form of poly-hydroxybutyrate (ranging from 45% to 64% of the observed yield) whereas the growth response (i.e. increase of production rate of active biomass) generally played a minor role (ranging from 21% to 38% of the observed yield). Apart from this general trend, culture residence time as well as feed frequency had a strong impact on transient behaviour of cultured cells. The overall transient response (i.e. maximum specific substrate removal rate) increased as culture residence time decreased or as feed frequency increased. Moreover, the ratio of storage response and growth response increased as the overall transient response decreased, i.e. the storage response was preferentially maintained when cells presented a lower transient response. The ability of the cells to increase their growth rate with respect to SBR average value was the lowest under the most unfavourable conditions (residence time 20d, feed frequency 1d(-1)) and increased with the increase in maximum substrate uptake rate.  相似文献   

16.
Data on the amounts of refractory organic compounds produced by activated sludge microorganisms under various conditions of cultivation were collected and treated in order to find the main factors influencing their production. The following systems were compared: batch non-proliferating and proliferating, continuous with high and low mean cell residence time and semicontinuous with separate aerobic sludge stabilization. It has been found that there exists a linear relationship between the refractory microbial products and the initial substrate concentration, both expressed in COD units. Both the slope and intercept of the relationship depend on the mean cell residence time or the observed specific growth rate. Depending on the cultivation conditions, the refractory products can amount to 1–10% of the substrate consumed. It has also been found that the amount of refractory compounds, expressed in COD units, released from 1 g of aerobically decomposed biomass varies from 15 to 25 mg g?1.  相似文献   

17.
In this paper, the effects of phenol concentration, pH, catalyst dose, persulfate concentration, temperature and contact time on the phenol removal from wastewater by activation of persulfate (S2O8?2) in the presence of biochar modified by lanthanum chloride and ultrasonic waves (US) are optimized. Experimental design and optimization were carried out by response surface methodology. The optimum conditions for the maximum phenol removal were obtained pH of 4, phenol concentration of 86 mg/L, catalyst dose of 43 mg/L, persulfate concentration of 86 mg/L, temperature of 41 °C and contact time of 63 min. The optimum phenol removal from synthetic wastewater was attained 97.68%. Phenol removal by the mentioned system was fitted with the first‐order kinetic model. The combination of the ingredients of ‘S2O8?2/US/Biochar‐LaCl3’ system had a synergistic effect on the phenol removal.  相似文献   

18.
Aerobic degradation of ethyl tert-butyl ether (ETBE), Methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME), as tertiary-substrates, was studied in a continuous upflow fixed-bed reactor (UFBR) using an external oxygenator and sintered glass rings as biomass carriers. The UFBR has been shown to be an effective system for the simultaneous and continuous long-term degradation of the three-oxygenates mixture as sole source of carbon and energy. Therefore, the oxygenates feed concentration must be related in conjunction with the hydraulic retention time "HRT" and vice versa. The permissible feed concentration of both MTBE and TAME to achieve more than 99% removal efficiency is about 80 mg L-1 at a constant HRT of 24 h. The same performance can be obtained if the HRT kept at a value equal or above to 15 h for a feed concentration of about 80 mg L-1 of both MTBE and TAME. However, the ETBE removal efficiency was always greater than 99% whatever the ETBE concentration feed (between 10 and 100 mg L-1 at a constant HRT of 24 h) and the HRT (between 24 and 13 h at a constant concentration feed of about 80 mg L-1) tested in this study. The highest ETBE, MTBE and TAME removal rates achieved throughout the UFBR runs, with efficiency better than 99%, were 140 +/- 5, 132 +/- 2 and 135 +/- 2 mg L-1 d-1, respectively. No metabolic intermediates including tert-butyl alcohol (TBA), tert-butyl formate (TBF) and tert-amyl alcohol (TAA) were detected in the effluent during all the reactor runs. Furthermore, based on the chemical oxygen demand balance, all the removed oxygenates were completely metabolized. The results of this study suggest that the higher resistance to biodegradation exhibited by the MTBE and the TAME is probably due to the steric hindrance for the attacking enzyme(s); and the major limiting step to the oxygenate degradation maybe the accessibility and the cleavage of the ether bond, but not the assimilation of their major metabolites such as TBA, TBF and TAA. These results were concomitant with the batch tests using the reactor's immobilized biomass as inoculum.  相似文献   

19.
Hybrid reactor for priority pollutant-trichloroethylene removal   总被引:3,自引:0,他引:3  
Misra C  Gupta SK 《Water research》2001,35(1):160-166
The present study was initiated to explore the potential of a hybrid biological reactor, combining trickling filter (TF) and activated sludge process (ASP), to treat wastewater containing trichloroethylene (TCE) at ambient temperature at different hydraulic retention time (HRT). The biofilm acclimation was achieved in 55-60 days with gradual increase in TCE concentration from 1 mg/l to 100 mg/l with a parallel increase in the concentration of substrate sodium acetate and other nutrients. COD and TCE concentration were taken as prime parameters for monitoring the growth of biofilm. During acclimation COD removal varied between 54.6-97.5% while TCE was removed 72.6-99.9%. HRT study was performed after acclimation. The removal efficiency increased with decreasing flow rate with maximum TCE removal (99.99%) at 6 l/d corresponding to an HRT of 28 h (TF 18 h + ASP 10 h). This was followed by a C:N:P ratio study. A ratio of 100:20:1 led to the sustenance of maximum TCE removal. Maximum TCE removal (99.99%) was observed at a substrate:cosubstrate ratio of 100:1. A pH of 7.4 +/- 0.2 was found to be optimum for degradation. Finally, volatilization losses were estimated to be 18.5%. A mass balance gave an efficiency of 81.51% for biological removal of TCE.  相似文献   

20.
The applicability of calcined and uncalcined hydrotalcite for the purification of industrial effluents has been studied using chromium finishing wastewaters. Using a batch method, the influence of the initial concentration of chromium (10-450mg/l), hydrotalcite (HT) dose (0.5-5g/l) and time (0.5-72h) has been evaluated. The process could be described by the Langmuir model and gave a maximum removal of chromium of 16.3mg Cr(VI)/g on uncalcined HT and 128mg Cr(VI)/g on calcined hydrotalcite (C-HT). Removal using the calcined product provided an effective system to treat chromium finishing wastewaters with the most stringent discharge limit for such industrial streams being achieved with between two and four consecutive removal cycles on C-HT at a dose of 2g/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号