首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
提出了一种分布式神经模糊网络和自学习模糊控制器的构成方法。它是CMAC模型的一种扩展,使其能进行模糊推理和构成自学习的模糊控制器。该方法除具有CMAC优点外,还具有以下特点:输入数据通过模糊划分和隶属函数后自动编码,对精度没有限制;从现场数据直接获取控制规则,即使对未训练的数据,也能结合插值和泛化两种能力,推理给出合适的输出。学习实例证明了方法的有效性。  相似文献   

2.
一种基于模糊CMAC神经网络的自学习控制器   总被引:6,自引:0,他引:6  
通过分析模糊控制和基于广义基函数的CMAC神经网络,提出一种模糊CMAC(FCMAC)神经网络。通过FCMAC权系数的在线学习,实现修正模糊逻辑。给出一种基于FCMAC的自学习控制器的结构及合适的学习算法,这种网络每次学习少量参数,算法简单。仿真结果表明所提出的控制器优于传统的PID控制器。  相似文献   

3.
该文将模糊神经网络与Pl控制技术相结合构成一种模糊神经解耦混合控制器。新控制器在控制过程中借助模糊神经网络的自学习算法实现控制参数的在线调整。仿真结果表明,该控制方法对非线性时变系统有较好的控制效果。  相似文献   

4.
一种自组织模糊神经网络控制器   总被引:12,自引:0,他引:12  
叶其革  吴捷 《控制与决策》1998,13(6):694-696
采用一种具有结构和参数学习能力的自组织模糊神经网络控制器设计方法。这种控制器无需事先确定模糊控制规则,能在控制过程中通过神经网络的结构及参数学习在线调整模糊神经网络的结构、产生模糊控制规则、调整规则的参数。仿真表明该控制器能用于一定纯滞后时变对象的控制,具有良好的控制性能。  相似文献   

5.
一种自适应模糊CMAC控制器   总被引:1,自引:0,他引:1  
本文提出一种自适应模糊CMAC控制器的设计方法,该控制器由模糊CMAC神经网络的五层节点实现模糊控制的输入,模糊化,模糊逻辑运算,归一化及输出值准确化运算,并由合适的BP训练算法修改相应的权系数,实现模糊控制规则的调整。  相似文献   

6.
本论文提出一种带智能积分控制规则自调整控制器设计方法,通过MATLAB对常用的几类工业恒温对象进行仿真表明,该控制器极大地提高了具有纯滞后环节系统的控制性能,其性能明显优于PID控制器。  相似文献   

7.
基于神经网络的自适应模糊控制器   总被引:10,自引:0,他引:10  
廖俊  林建亚 《信息与控制》1995,24(5):312-315
本文提出了一种基于神经网络的自适应模糊控制器,控制器为5层前向结构,其输入和输出均为数值量。根据给定的训练数据,通过学习算法,能够实现前件参数和后件参数的辨识,提取控制规则,最后通过仿真实验证明了这种方法的有效性。  相似文献   

8.
一种新型自寻优模糊控制器   总被引:1,自引:3,他引:1  
吴俊杰  郭嗣琮 《控制工程》2003,10(5):469-471
利用梯度下降法反向修改带有可调整因子的模糊控制器中的可调整因子。提出了一种对可调整因子进行在线实时修改和优化的方法。通过对被控对象的分析给出了控制器参数的初值。在运行过程中,利用该方法对可调整因子进行在线实时修改和优化,实现模糊控制器控制规则的自寻优,使过程具有较好的控制品质。  相似文献   

9.
一种参数自调整PID模糊控制器   总被引:3,自引:0,他引:3  
结合传统PID控制原理,提出一种新型模糊控制器结构,即PID模糊控制器。为提高PID控制器性能,设计能在线调整PID参数的模糊控制方法。仿真结果表明,自调整参数PID型模糊控制器使系统在暂态响应及稳态性能方面性能优良。  相似文献   

10.
基于遗传算法的RBF神经模糊控制器   总被引:3,自引:0,他引:3  
基于RBF网络和T-S模糊推理过程的函数等价性,将遗传算法引入RBF网络,并结合RBF网络常用的梯度法构成一种模糊控制、RBF网络及遗传算法三者合一的的控制器,从而达到准确、快速的控制。  相似文献   

11.
一类动态递归神经网络的智能控制器   总被引:2,自引:0,他引:2  
提出一种改进型动态递归神经网络的自适应控制方法,研究了动态递归网络的学习算法,分析了学习算法的收敛性,并推导了保证算法收敛的有效学习率范围,在此基础上提出了模糊推理自适应学习率方法。计算机仿真实验表明,本文控制方法对于未知、非线性被控对象的控制是有效的。  相似文献   

12.
一种用于非线性控制的神经网络模糊自组织控制器   总被引:5,自引:0,他引:5  
本文提出一种神经网络自组织控制器,并应用于非线性跟踪控制中,为了加快模糊控制器的在线学习,文中给出了一种变的最速梯度下降学习算法,仿真结果表明,该控制是有效的。  相似文献   

13.
模糊CMAC神经网络用于MIMO非线性系统的反馈线性化   总被引:8,自引:0,他引:8  
针对一类多输入多输出(MIMO)连续时间非线性系统,应用模糊CMAC神经网络,给出一种状态反馈控制器,用于使状态反馈可线笥化的未知的非线性动态系统儿得要求的患 很弱的假设条件下,应用李雅普诺夫稳定性理论严格地证明了闭环系统内的所有信号为一致最终有界(UUB)。  相似文献   

14.
一种最优模糊神经网络控制器   总被引:4,自引:0,他引:4  
基于最优控制的思想,通过对控制系统的过程模拟,提出一种最优模糊神经网络控制器的设计方案,首先利用基于十进制编码机制的遗传算法寻找最优的控制器结构,然后利用基于浮点数编码机制的遗传算法寻的最优的控制器参数,仿真结果表明该控制器优于常规模糊控制器。  相似文献   

15.
自适应B样条模糊神经网络控制器的设计   总被引:2,自引:0,他引:2  
B样条具有最小局部支撑和易于实现的优点。文章利用多变量B样条网络在运算表达式上与模糊神经网络结构之间的对等关系,并通过对其权值的训练,设计出自适应B样条模糊神经网络控制器。应用于具有严重非线性摩擦力影响的速度跟踪系统的仿真实验表明,所设计的控制器完全等价于模糊神经网络控制器,同时在计算量和实现上具有明显的优势。  相似文献   

16.
基于改进的CMAC神经网络与PID并行控制的研究   总被引:6,自引:0,他引:6  
提出一种改进的CMAC神经网络控制算法,利用满打满葬单元的先前学习次数作为可信度;将改进的CMAC与PID实现复合控制,由CMAC控制器实现前馈控制,PID控制实现反馈控制;仿真表明,改进算法的响应速度和精度有一定的改善。  相似文献   

17.
介绍一种基于RBF的模糊神经网络设计与仿真分析的实现方法。该方法利用MATLAB中的神经网络工具箱图形用户界面GUI结合模糊控制规则表给定的输入/输出样本数据设计、构建RBF模糊神经控制器,并在Simulink中建立系统仿真模型。通过对阶跃输入信号作用下系统动态性能的仿真分析,结果表明基于RBF的模糊神经控制器有良好的控制性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号