首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of observations from several rodent species suggest that a serotonin (5-HT) input to the suprachiasmatic nucleus (SCN) circadian pacemaker may play a role in resetting or entrainment of circadian rhythms by non-photic stimuli such as scheduled wheel running. If 5-HT activity within the SCN is necessary for activity-induced phase shifting, then it should be possible to block or attenuate these phase shifts by reducing 5-HT release or by blocking post-synaptic 5-HT receptors. Animals received one of four serotonergic drugs and were then locked in a novel wheel for 3 h during the mid-rest phase, when novelty-induced activity produces maximal phase advance shifts. Drugs tested at several doses were metergoline (5-HT1/2 antagonist; i.p.), (+)-WAY100135 (5-HT1A postsynaptic antagonist, which may also reduce 5-HT release by an agonist effect at 5-HT1A raphe autoreceptors; i.p.), NAN-190 (5-HT1A postsynaptic antagonist, which also reduces 5-HT release via an agonist effect at 5-HT1A raphe autoreceptors; i.p.) and ritanserin (5-HT2/7 antagonist; i.p. and i.c.v.). Mean and maximal phase shifts to running in novel wheels were not significantly affected by any drug at any dose. These results do not support a hypothesis that 5-HT release or activity at 5HT1, 2 and 7 receptors in the SCN is necessary for the production of activity-induced phase shifts in hamsters.  相似文献   

2.
Syrian hamsters, Mesocricetus auratus, were confined to novel running wheels for a 3-h period, starting at approximately circadian time (CT) 4.5 (i.e., approaching the middle of their subjective day). It can be reliably predicted from the amount of running in this situation whether or not there will be a subsequent phase-shift. Expression of the immediate early genes c-fos and fosB was examined by immunocytochemistry in the suprachiasmatic nucleus (SCN), the intergeniculate leaflet (IGL) of the thalamus, and the medial pretectal area of hamsters that ran vigorously in the novel wheel and would have phase-shifted. c-Fos was increased, compared to levels in a control group left in their home cages, in the IGL, and the pretectum (PT), but decreased in the SCN. No significant changes in FosB were detected in any region examined. An additional experiment argued against the possibility that the changes in c-Fos could be attributed to a rapid advance of the pacemaker to a different phase in the circadian cycle. Counts of c-Fos-positive cells in the IGL were similar in animals given pulses of running starting at CT 4.5 and starting at CT 12.5-16 (i.e., in the subjective night when they would have been active anyway). Altogether the results support the view that activation of the IGL is important in nonphotic clock resetting, and raise the possibility that the PT may also be involved in nonphotic resetting. However, the results also indicate that novelty-induced running does not alter c-Fos induction in a phase-specific manner in the IGL. The inhibition of c-Fos in the SCN by nonphotic phase-shifting events contrasts with the well-known inducing effects of light pulses. These different effects might underlie some of the interactions between nonphotic and photic zeitgebers when both act together on the circadian system.  相似文献   

3.
The effects of the putative 5-HT1A receptor antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzam ide (p-MPPI) were examined on the activity of serotonergic dorsal raphe nucleus neurons in freely moving cats. Systemic administration of p-MPPI produced a dose-dependent increase in firing rate. This stimulatory effect of p-MPPI was evident during wakefulness (when serotonergic neurons display a relatively high level of activity), but not during sleep (when serotonergic neurons display little or no spontaneous activity). p-MPPI also blocked the ability of the 5-HT1A receptor agonist 8-hydroxy-(2-di-n-propylamino)tetralin (8-OH-DPAT) to inhibit serotonergic neuronal activity. This antagonism was evident both as a reversal of the neuronal inhibition produced by prior injection of 8-OH-DPAT and as a shift in the potency of 8-OH-DPAT following p-MPPI pretreatment. Overall, these results in behaving animals indicate that p-MPPI acts as an effective 5-HT1A autoreceptor antagonist. The increase in firing rate produced by p-MPPI supports the hypothesis that autoreceptor-mediated feedback inhibition operates under physiological conditions.  相似文献   

4.
Converging lines of evidence have firmly established that the hypothalamic suprachiasmatic nucleus (SCN) is a light-entrainable circadian oscillator in mammals, critically important for the expression of behavioral and physiological circadian rhythms. Photic information essential for the daily phase resetting of the SCN circadian clock is conveyed directly to the SCN from retinal ganglion cells via the retinohypothalamic tract. The SCN also receives a dense serotonergic innervation arising from the mesencephalic raphe. The terminal fields of retinal and serotonergic afferents within the SCN are co-extensive, and serotonergic agonists can modify the response of the SCN circadian oscillator to light. However, the functional organization and subcellular localization of 5HT receptor subtypes in the SCN are just beginning to be clarified. This information is necessary to understand the role 5HT afferents play in modulating photic input to the SCN. In this paper, we review evidence suggesting that the serotonergic modulation of retinohypothalamic neurotransmission may be achieved via at least two different cellular mechanisms: 1) a postsynaptic mechanism mediated via 5HT1A or 5ht7 receptors located on SCN neurons; and 2) a presynaptic mechanism mediated via 5HT1B receptors located on retinal axon terminals in the SCN. Activation of either of these 5HT receptor mechanisms in the SCN by specific 5HT agonists inhibits the effects of light on circadian function. We hypothesize that 5HT modulation of photic input to the SCN may serve to set the gain of the SCN circadian system to light.  相似文献   

5.
Systemic administration of the 5-HT1A receptor agonist 8-OH-2-(di-n-propylamino)-tetralin (8-OH-DPAT; 0.3 mg/kg, s.c.) was used to explore the effects of activation of 5-HT1A receptors on expression of mRNA coding for 5-HT1A receptor, tryptophan hydroxylase (TPH) and galanin in the ascending raphe nuclei. 8-OH-DPAT increased the hybridization signal of the 5-HT1A receptor by 105% in the dorsal raphe nucleus (B7) 30 min after the injection. No effects were seen at the later time points (2-8 h). In the median raphe nucleus (B8) and the B9 cell group in the medial lemniscus, 8-OH-DPAT induced a marked decrease in labeling 30 min after injection. At 8 h following 8-OH-DPAT injection, the effect had shifted to an increase in 5-HT1A receptor labeling by 68% in the B8 area. Importantly 8-OH-DPAT had no significant effects on the expression of mRNA coding for TPH and galanin. The results suggest an important and differential mechanism for the regulation of 5-HT1A receptor mRNA levels in the dorsal and median raphe nuclei. This regulation may be of importance for the differential control of the activity of the ascending 5-HT neurons, and hence for mood regulation. The results also indicate a dissociation between the effects mediated by 5-HT1A receptor functions and those regulating the coexisting peptide galanin in the dorsal raphe.  相似文献   

6.
Rats were trained to discriminate 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.1 mg/kg i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT, 1.25 mg/kg i.p.), a selective and nonselective 5-hydroxytryptamine1A (5-HT, serotonin) receptor agonist, respectively, from saline in a two-lever procedure. The selective 5-HT1A receptor agonist ipsapirone substituted completely for 8-OH-DPAT (ED50, 1.52 mg/kg) and 5-OMe-DMT substituted partially for 8-OH-DPAT, whereas 8-OH-DPAT (ED50, 0.07 mg/kg) and ipsapirone (ED50, 4.15 mg/kg) substituted completely for 5-OMe-DMT. These results suggest that the discriminative stimulus properties of both 8-OH-DPAT and 5-OMe-DMT are 5-HT1A receptor mediated, although 5-OMe-DMT may involve an additional interaction with other 5-HT receptor subtypes. 5-OMe-DMT substituted for 8-OH-DPAT after application in the lateral ventricle (ED50, 3.0 micrograms/rat) and the dorsal raphe nucleus (DRN, 1.1 micrograms/rat). After application in the DRN (ED50 range, 1.4-5.0 micrograms/rat) and the median raphe nucleus (2.3 micrograms/rat), and after bilateral application into the CA-4 region of the dorsal hippocampus (4.1 micrograms/rat), 8-OH-DPAT also produced responding on the 8-OH-DPAT lever. Ipsapirone also substituted for 8-OH-DPAT after application into the DRN and the hippocampus (ED50S, 38 and 62 micrograms/rat, respectively). The 5-HT1A mixed agonist-antagonist (1-(2-methoxyphenyl) 4-[4-(2-pthalimido)butyl]piperazine, i.p. NAN-190) attenuated the discriminative stimulus effects of 8-OH-DPAT injected i.p. (0.1 mg/kg), into the DRN (10 micrograms) or into the hippocampus (2 x 10 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Systematic treatment of hamsters with triazolam (TRZ) or novel wheel (NW) access will yield PRCs similar to those for neuropeptide Y. Both TRZ and NW access require an intact intergeniculate leaflet (IGL) to modulate circadian rhythm phase. It is commonly suggested that both stimulus types influence rhythm phase response via a mechanism associated with drug-induced or wheel access-associated locomotion. Furthermore, there have been suggestions that one or both of these stimulus conditions require an intact serotonergic system for modulation of rhythm phase. The present study investigated these issues by making serotonin neuron-specific neurotoxic lesions of the median or dorsal raphe nuclei and evaluating phase response of the hamster circadian locomotor rhythm to TRZ treatment or NW access. The expected effect of TRZ injected at CT 6 h on the average phase advance was virtually eliminated by destruction of serotonin neurons in the median, but not the dorsal, raphe nucleus. No control or lesioned animal engaged in substantial wheel running in response to TRZ. By contrast, all median raphe-lesioned hamsters that engaged in substantial amounts of running when given access to a NW had phase shifts comparable to control or dorsal raphe-lesioned animals. The results demonstrate that serotonergic neurons in the median raphe nucleus contribute to the regulation of rhythm phase response to TRZ and that it is unlikely that these neurons are necessary for phase response to NW access. The data further suggest the presence of separate pathways mediating phase response to the two stimulus conditions. These pathways converge on the IGL, a nucleus afferent to the circadian clock, that is necessary for the expression of phase response to each stimulus type.  相似文献   

8.
Mammalian circadian rhythms are synchronized to environmental light/dark (LD) cycles via daily phase resetting of the circadian clock in the suprachiasmatic nucleus (SCN). Photic information is transmitted to the SCN directly from the retina via the retinohypothalamic tract (RHT) and indirectly from the retinorecipient intergeniculate leaflet (IGL) via the geniculohypothalamic tract (GHT). The RHT is thought to be both necessary and sufficient for photic entrainment to standard laboratory light/dark cycles. An obligatory role for the IGL-GHT in photic entrainment has not been demonstrated. Here we show that the IGL is necessary for entrainment of circadian rhythms to a skeleton photoperiod (SPP), an ecologically relevant lighting schedule congruous with light sampling behavior in nocturnal rodents. Rats with bilateral electrolytic IGL lesions entrained normally to lighting cycles consisting of 12 hr of light followed by 12 hr of darkness, but exhibited free-running rhythms when housed under an SPP consisting of two 1 hr light pulses given at times corresponding to dusk and dawn. Despite IGL lesions and other damage to the visual system, the SCN displayed normal sensitivity to the entraining light, as assessed by light-induced Fos immunoreactivity. In addition, all IGL-lesioned, free-running rats showed masking of the body temperature rhythm during the SPP light pulses. These results show that the integrity of the IGL is necessary for entrainment of circadian rhythms to a lighting schedule like that experienced by nocturnal rodents in the natural environment.  相似文献   

9.
Photic information that entrains circadian rhythms is transmitted to the suprachiasmatic nucleus (SCN) from the retina and from the retinorecipient intergeniculate leaflet (IGL). Expression of light-induced Fos protein in SCN neurons is correlated with the effectiveness of such light to induce phase shifts, and is prevented by pretreatment with glutamate receptor antagonists that prevent phase shifts as well. In the present study we demonstrate that treatments with N-methyl-d-aspartate (NMDA) and non-NMDA receptor antagonists prior to light pulses during the subjective night have no effect on light-induced Fos immunoreactivity (Fos-IR) in IGL neurons despite attenuating Fos-IR in the SCN. Transmission of photic information along retinogeniculate and retinohypothalamic pathways appears to be mediated by different mechanisms.  相似文献   

10.
Little is known about the neural substrates controlling circadian rhythms in day-active compared to night-active mammals primarily because of the lack of a suitable diurnal rodent with which to address the issue. The murid rodent, Arvicanthis niloticus, was recently shown to exhibit a predominantly diurnal pattern of activity and body temperature, and may be suitable for research on the neural mechanisms underlying circadian rhythms. This paper describes, in A. niloticus, the anatomy of two neural structures that play important roles in the control of circadian rhythms, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL). Immunohistochemical techniques were used to examine the distribution of neuroactive peptides in the SCN and IGL, and retinal projections to these structures were traced with anterograde transport of the beta subunit of cholera toxin. In A. niloticus, distinct subdivisions of the SCN contained cell bodies with immunoreactive (IR) vasopressin, vasoactive intestinal polypeptide, gastrin-releasing peptide, and corticotropin-releasing factor. The SCN did not contain cell bodies with met-enkephalin-IR and substance P-IR, but did contain fibers with substance P-IR and neuropeptide Y-IR. Retinal fibers were present throughout the SCN, but were most densely concentrated along its ventral edge, particularly in the contralateral SCN. Retinal fibers also extended to a variety of hypothalamic regions outside the SCN, including the supraoptic nucleus and the subparaventricular region. The IGL contained cells with neuropeptide Y-IR and enkephalin-IR cells. Retinal fibers projected to both the ipsilateral and contralateral IGL. The anatomy of the SCN and IGL were compared and contrasted with that previously described for other nocturnal and diurnal species.  相似文献   

11.
The blind mole rat, Spalax, is a subterranean rodent with atrophied, subcutaneous eyes. Whereas most of the visual system is highly degenerated, the retino-hypothalamic pathway in this species has remained intact. Although Spalax is considered to be visually blind, circadian locomotor rhythms are entrained by the light/dark cycle. In the present study we used anterograde tracing techniques to demonstrate retinal afferents to the suprachiasmatic nucleus (SCN) and immunohistochemistry to examine the distribution of neuropeptides that are known to be involved in the regulation or expression of circadian rhythmicity. Based on the localization of retinal afferents and neuropeptides, the SCN can be divided into two subdivisions. The ventral region, which receives retinal afferents, also contains vasoactive intestinal polypeptide (VIP)-containing neurons, and fibers that are immunopositive to neuropeptide Y (NPY) and serotonin (5-HT). The dorsal region contains vasopressinergic neurons, but this latter cell population is extremely sparse compared to that described in other rodents. The dorsal region is also characterized by numerous VIP-immunoreactive fibers. The presence of NPY and 5-HT fibers suggests that the SCN receives afferent projections from the intergeniculate leaflet and from the raphe nuclei, respectively. These neuroanatomical results, together with previous studies of behavior, visual tract tracing, and immediate early gene expression, confirm that an endogenous clock and the capacity for light entrainment of circadian rhythms are conserved in the blind mole rat.  相似文献   

12.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose-response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

13.
Prior work suggests that inhibition of the dorsal raphe nucleus (DRN) either during exposure to inescapable electric shock (IS) or during later behavioral testing might block the usual behavioral consequences of IS. The 5-HT1A agonist 8-OH-DPAT was microinjected into the region of the DRN either before exposure to IS or before testing for fear conditioning and escape learning conducted 24 hr later. IS potentiated fear conditioning and interfered with escape performance. These effects were completely prevented by intra-DRN administration of 8-OH-DPAT at either point. Low but not high systemic doses of 8-OH-DPAT had a similar effect, supporting the idea that the effective site of action is presynaptic. The relation between these data and other effects of 8-OH-DPAT is discussed.  相似文献   

14.
Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 [3H-labeled N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexa necarboxamide x 3HCl] binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

15.
The ventral lateral geniculate nucleus (vLGN) and the intergeniculate leaflet (IGL) are retinorecipient subcortical nuclei. This paper attempts a comprehensive summary of research on these thalamic areas, drawing on anatomical, electrophysiological, and behavioral studies. From the current perspective, the vLGN and IGL appear closely linked, in that they share many neurochemicals, projections, and physiological properties. Neurochemicals commonly reported in the vLGN and IGL are neuropeptide Y, GABA, enkephalin, and nitric oxide synthase (localized in cells) and serotonin, acetylcholine, histamine, dopamine and noradrenalin (localized in fibers). Afferent and efferent connections are also similar, with both areas commonly receiving input from the retina, locus coreuleus, and raphe, having reciprocal connections with superior colliculus, pretectum and hypothalamus, and also showing connections to zona incerta, accessory optic system, pons, the contralateral vLGN/IGL, and other thalamic nuclei. Physiological studies indicate species differences, with spectral-sensitive responses common in some species, and varying populations of motion-sensitive units or units linked to optokinetic stimulation. A high percentage of IGL neurons show light intensity-coding responses. Behavioral studies suggest that the vLGN and IGL play a major role in mediating non-photic phase shifts of circadian rhythms, largely via neuropeptide Y, but may also play a role in photic phase shifts and in photoperiodic responses. The vLGN and IGL may participate in two major functional systems, those controlling visuomotor responses and those controlling circadian rhythms. Future research should be directed toward further integration of these diverse findings.  相似文献   

16.
In response to a light pulse, hamsters normally generate phase advances that are positively correlated with the length of their circadian period (tau). To determine whether this is a general property of the phase-shifting oscillator, the present study looked for a correlation between tau and phase-advance size not only for photic but also for nonphotic shifts. Syrian hamsters, Mesocricetus auratus, were entrained to light-dark cycles with a periodicity of either 23.67 h (the short-T group) or 24.33 h (the long-T group); after release into constant darkness, the short-T and long-T groups exhibited short and long taus, respectively. These animals were then induced to run in a novel exercise wheel for 3 h, starting at circadian time (CT) 7, or were exposed to 20 min of light, starting at CT 19. The size of the ensuing phase advances did not differ between the short-T and long-T groups not only for the nonphotic stimulus but also for the photic one, an unexpected result for the photic stimulus. Within the short-T groups for photic and nonphotic stimuli, the shorter tau was, the larger the phase advances were, another unexpected relationship. Another experiment where phase delays were induced by light pulses at CT 15 also failed to yield significant differences between the short-T and long-T groups. Independently of their after-effects on tau, T cycles may influence the capacity of the pacemaker to phase shift in ways that are still unclear but at least similar for both photic and nonphotic shifts.  相似文献   

17.
These studies investigated the circadian effects of light and gamma aminobutyric acid-A (GABAA) receptor activation in the suprachiasmatic nucleus (SCN) of the diurnal unstriped Nile grass rat (Arvicanthis niloticus). Microinjection of the GABAA agonist muscimol into the SCN during the day produced phase shifts that were opposite in direction to those previously reported in nocturnal rodents. In addition, light had no significant effect on the magnitude of muscimol-induced phase delays during the daytime. Injection of muscimol during the night, however, significantly inhibited light-induced phase delays and advances in a manner similar to that previously reported in nocturnal rodents. Therefore, the circadian effects of GABAA receptor activation are similar in diurnal and nocturnal species during the night but differ significantly during the day. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Rats were trained on an appetitive Pavlovian conditioning task in which the conditioned stimulus (CS) was either localized (a light in the food tray) or nonlocalized (an increase in the general level of illumination). The conditioned response (CR) of approaching the site of food delivery in the presence of the CS was monitored. Presession treatment with the 5-HT1A agonist 8-OH-DPAT (subcutaneous injections at a dose of 0.15 mg/kg) retarded acquisition of the CR, but only when the localized CS was used. The results confirm the general proposal that serotonergic processes are involved in learning. The selective effect of the drug is not to be explained in terms of its motor effects and is consistent with the specific suggestion that systemic administration of 8-OH-DPAT is especially effective in disrupting learning tasks mediated by hippocampal mechanisms. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
In the present study, we examined denervation-induced changes in the sensitivity of hypothalamic postsynaptic serotonin1A (5-HT1A) receptor function with respect to changes in the dose-dependent elevation in plasma hormones [adrenocorticotropic hormone (ACTH), corticosterone, prolactin, oxytocin, prolactin, renin and vasopressin] by the 5-HT1A agonist 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT). Rats received intracerebroventricular (i.c.v.) injections of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (0.1% ascorbate in saline) 3 weeks before challenge with increasing doses of 8-OH-DPAT (0, 10, 50 or 200 micrograms/kg s.c.). The effectiveness of 5,7-DHT-induced destruction of serotonergic neurons was confirmed by a 93% reduction in [3H]paroxetine-labeled 5-HT uptake sites in the hypothalamus. No changes in basal levels of ACTH, corticosterone, oxytocin, prolactin, renin and vasopressin were observed in rats that received i.c.v. 5,7-DHT injections. The dose-response curves for 8-OH-DPAT-induced elevations of plasma corticosterone and prolactin levels were shifted to the left in rats treated with 5,7-DHT, whereas no significant difference in the ACTH dose-response curve was observed between rats treated with vehicle and rats treated with 5,7-DHT. In contrast, the maximal oxytocin response to 8-OH-DPAT was attenuated in rats treated with 5,7-DHT. A 5,7-DHT-induced decline in the synthesis of oxytocin could explain this phenomenon. Although 8-OH-DPAT did not increase plasma levels of renin or vasopressin in rats treated with vehicle, 8-OH-DPAT produced an elevation (75%) in plasma renin concentration but not in vasopressin levels in rats that received i.c.v. injections of 5,7-DHT. No change was observed in [3H]8-OH-DPAT labeled 5-HT1A receptors in the hypothalamus. In summary, denervation of hypothalamic serotonergic nerve terminals produces supersensitivity of some neuroendocrine responses to 8-OH-DPAT independent of changes in the density of hypothalamic 5-HT1A receptors.  相似文献   

20.
Serotonin 5-HT1A receptors belong to the superfamily of G-protein-coupled receptors. Receptor activation of G-proteins can be determined by agonist-stimulated [35S]GTPgammaS binding in the presence of excess GDP, and in vitro autoradiographic adaptation of this technique allows visualization of receptor-activated G-proteins in tissue sections. The present study was performed to examine 5-HT1A receptor activation of G-proteins using 8-OH-DPAT-stimulated [35S]GTPgammaS binding in membranes and brain sections. In hippocampal membranes, 8-OH-DPAT stimulated [35S]GTPgammaS binding by twofold, with an ED50 value of 25 nM. 5-HT1 antagonists, but not 5-HT2 antagonists, increased the ED50 of 8-OH-DPAT in a manner consistent with competitive antagonists. Scatchard analysis of [35S]GTPgammaS binding showed that 8-OH-DPAT induced the formation of high affinity [35S]GTPgammaS binding sites with a KD for GTPgammaS of 3.2 nM. [35S]GTPgammaS autoradiography, performed in brain sections with the 5-HT1A agonist 8-OH-DPAT, revealed high levels of 5-HT1A-stimulated [35S]GTPgammaS binding in the hippocampus, lateral septum, prelimbic cortex, entorhinal cortex, and dorsal raphe nucleus. 5-HT1A-stimulated [35S]GTPgammaS binding in sections was blocked by the addition of the 5-HT1 antagonist methiothepin. These results show that the use of agonist-stimulated [35S]GTPgammaS autoradiography for the 5-HT1A receptor system should provide new information regarding signal transduction in specific brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号