首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic wet-air oxidation (CWAO) of aqueous solutions (5 g · l−1) of car☐ylic acids (formic, oxalic, and maleic) was carried out with air at 293–463 K on carbon-supported platinum catalysts. Platinum was loaded on active charcoal by cationic exchange, then reduced under H2. Homogeneous dispersions of 1–2 nm metal particles were obtained. CWAO reactions were performed at 1 or 15 bar air pressure in stirred, batch reactors. Total conversion of formic and oxalic acids into carbon dioxide was obtained under very mild conditions (air at atmospheric pressure, 326 K). The Pt/C catalyst was almost inactive for the oxidation of acetic acid but maleic acid was oxidized under moderate conditions (15 bar of air pressure, 405 K) which indicates that the degradation of this acid does not occur via acetic acid.  相似文献   

2.
顺丁橡胶尾气排放中主要污染物是正己烷,选择性催化氧化法是处理正己烷的主要技术。以聚乙二醇为助剂,制备Pt/Al_2O_3催化剂,利用侧线测试其催化性能,采用CO化学吸附与透射电子显微镜对催化剂进行表征。侧线测试结果表明,催化剂活性优于进口同类催化剂,250℃时,正己烷被完全氧化;CO化学吸附结果表明,Pt/Al_2O_3催化剂中贵金属分散度为75.9%,进口催化剂只有58.7%;TEM表明,Pt/Al_2O_3催化剂上金属分布更均匀。Pt/Al_2O_3催化剂应用于顺丁橡胶尾气处理,催化活性稳定。  相似文献   

3.
采用浸渍法制备了Pt/Al2O3,在300℃、CCl4氯化1h,制备出Pt/Al2O3-Cl催化剂。采用FT-IR、XRD、TEM、CO-IR、Py-IR和TPD等方法表征了催化剂,并与中温型RISO催化剂的催化性能进行比较。结果表明,在氯化处理过程中氯取代了氧化铝的表面羟基,导致3000~3800cm-1红外吸收峰强度大幅度减小,但催化剂的晶相不发生改变;氯化使Pt粒子的平均粒径增大,粒径分布变宽,金属分散度降低;氯化后金属Pt主要以+2价的PtCl2的形式出现,其中一部分生成了易升华的PtCl2·2AlCl3,从而导致Pt含量降低;氯化后的催化剂上只有L酸,评价后既有L酸,又有B酸;氯化后的催化剂热稳定不高,随着温度升高,3种类型的氯化物相继脱出;Pt/Al2O3-Cl相对于中温型RISO催化剂表现出较好的异构化性能,正己烷转化率达88.17%,2,2-二甲基丁烷选择性达29.68%,裂化和氢解几乎没有发生。  相似文献   

4.
Pt/Al2O3 catalysts with smaller size of Pt nanoparticles were prepared by ethylene glycol reduction method in two different way and their oxidation activities for three typical VOCs (volatile organic compounds) were evaluated. The catalyst prepared by first adsorption and then reduction procedure is denoted as L-Pt/Al2O3 while the catalyst prepared by first reduction and then loading procedure is defined as R-Pt/Al2O3. The results show that L-Pt/Al2O3 with the stronger interaction between Pt species and Al2O3 exhibit smaller size of Pt nanoparticles and favorable thermal stability compared with R-Pt/Al2O3. L-Pt/Al2O3 is favor of the formation of more adsorbed oxygen species and more Pt2+ species, resulting in high catalytic activity for benzene and ethyl acetate oxidation. However, R-Pt/Al2O3 catalysts with higher proportion of Pt0/Pt2+ and bigger size of Pt particles exhibits higher catalytic activity for n-hexane oxidation. Pt particles in R-Pt/Al2O3 were aggregated much more serious than that in L-Pt/Al2O3 at the same calcination temperature. The Pt particles supported on Al2O3 with~10 nm show the best catalytic activity for n-hexane oxidation.  相似文献   

5.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al2O3 and 1 wt.% Pd/20 wt.% BaO/Al2O3 NOx storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al2O3 catalyst exhibits higher overall NOx reduction activity. Limited amounts of N2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al2O3 and Pd/Al2O3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al2O3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity (i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity (i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C.  相似文献   

6.
通过浸渍法制备了Al_2O_3负载的Pd和Pt催化剂,考察催化剂的甲烷、乙烷和丙烷催化燃烧活性,以及助剂Ba对催化性能的影响。对于Pd/Al_2O_3催化剂,加入Ba使活性物种PdO颗粒变大和还原温度升高,形成更稳定的PdO活性物种,是Pd-Ba/Al_2O_3催化剂活性提升的主要原因。对于Pt/Al_2O_3催化剂,加入Ba助剂使活性物种Pt0含量降低,PtO_x与Al_2O_3载体相互作用增强,使PtO_x物种更难被还原为Pt~0,导致Pt-Ba/Al_2O_3催化剂活性降低。Pd和Pt催化剂催化烷烃氧化反应活性规律一致:丙烷乙烷甲烷。Pd/Al_2O_3催化剂有利于C—H键活化,Pt/Al_2O_3催化剂有利于C—C键活化。Pt/Al_2O_3催化剂对C1-C3烷烃氧化活性的差别明显大于Pd/Al_2O_3催化剂。Pt/Al_2O_3催化剂对碳比例高的烷烃活性更高。  相似文献   

7.
Oxidation of propene and propane to CO2 and H2O has been studied over Au/Al2O3 and two different Au/CuO/Al2O3 (4 wt.% Au and 7.4 wt.% Au) catalysts and compared with the catalytic behaviour of Au/Co3O4/Al2O3 (4.1 wt.% Au) and Pt/Al2O3 (4.8 wt.% Pt) catalysts. The various characterization techniques employed (XRD, HRTEM, TPR and DR-UV–vis) revealed the presence of metallic gold, along with a highly dispersed CuO (6 wt.% CuO), or more crystalline CuO phase (12 wt.% CuO).

A higher CuO loading does not significantly influence the catalytic performance of the catalyst in propene oxidation, the gold loading appears to be more important. Moreover, it was found that 7.4Au/CuO/Al2O3 is almost as active as Pt/Al2O3, whereas Au/Co3O4/Al2O3 performs less than any of the CuO-containing gold-based catalysts.

The light-off temperature for C3H8 oxidation is significantly higher than for C3H6. For this reaction the particle size effect appears to prevail over the effect of gold loading. The most active catalysts are 4Au/CuO/Al2O3 (gold particles less than 3 nm) and 4Au/Co3O4/Al2O3 (gold particles less than 5 nm).  相似文献   


8.
Micro-channel plates with dimension of 1 mm × 0.3 mm × 48 mm were prepared by chemical etching of stainless steel plates followed by wash coating of CeO2 and Al2O3 on the channels. After coating the support on the plate, Pt, Co, and Cu were added to the plate by incipient wetness method. Reaction experiments of a single reactor showed that the micro-channel reactor coated with CuO/CeO2 catalyst was highly selective for CO oxidation while the one coated with Pt-Co/Al2O3 catalyst was highly active for CO oxidation. The 7-layered reactors coated with two different catalysts were prepared by laser welding and the performances of each reactor were tested in large scale of PROX conditions. The multi-layered reactor coated with Pt-Co/Al2O3 catalyst was highly active for PROX and the outlet concentration of CO gradually increased with the O2/CO ratio due to the oxidation of H2 which maintained the reactor temperature. The multi-layered reactor coated with CuO/CeO2 showed lower catalytic activity than that coated with Pt catalyst, but its selectivity was not changed with the increase of O2/CO ratios due to the high selectivity. In order to combine advantages (high activity and high selectivity) of the two individual catalysts (Pt-Co/Al2O3, CuO/CeO2), a serial reactor was prepared by connecting the two multi-layered micro-channel reactors with different catalysts. The prepared serial reactor exhibited excellent performance for PROX.  相似文献   

9.
The oxidation of maleic and oxalic acids in diluted aqueous solutions and with platinum catalysts under potential control was studied with the purpose of defining the influence of potential on the catalytic activity. This control was achieved either by an external device or was spontaneously established in the presence of the reactants. The effect of the composition and of the pH was also investigated.

Oxalic acid can be oxidized in mild experimental conditions (T=333 K, PO2≤1 bar) and at potential values of the catalyst comprised between 0.7<E<1.8 V/RHE with a maximum catalytic activity at 1.3 V/RHE. The catalytic oxidation of this compound under external control of catalyst potential occurs following the same mechanism as the electrocatalytic oxidation. Oxalic acid is weakly adsorbed and its oxidation is inhibited by strongly adsorbed anions.

Maleic acid needs more severe experimental condition to be oxidized (T=383 K, PO2=1–5 bars) and catalyst potentials in the range of 0.4≤E<1.1 V/RHE. In the same potential range an active adsorbed species was detected.

The catalytic oxidation of maleic acid follows the same mechanism with and without external control of catalyst potential which should be different from the mechanism of the electrocatalytic oxidation.  相似文献   


10.
The Pd–Pt/Al2O3 bimetallic catalysts showed high activities toward the wet oxidation of the reactive dyes in the presence of 1% H2 together with excess oxygen. Palladium was believed to act as a co-catalyst to spillover the adsorbed H2 onto the surface of the oxidized Pt surface, and thereby the reducibility of the Pt increased greatly. The organic dye molecule adsorbed on the reduced Pt surface more easily than the oxidized Pt surface under the competition with excess oxygen, which is an essential step for the catalytic wet oxidation (CWO). The Pd–Pt/Al2O3 catalysts also produced H2O2 from H2/O2 mixture, and the hydroxyl radical was formed through the subsequent decomposition of H2O2. Additional oxidation of the reactive dyes was obtained with hydroxyl radical. The high activities of the Pd–Pt/Al2O3 catalysts were believed to be due to the combined effects of the faster redox cycle resulting from the increased reducibility of Pt surface and the additional oxidation of the reactive dyes with hydroxyl radical.  相似文献   

11.
12.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

13.
The NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2 has been investigated on Pt/Ba/Fe/Al2O3, Pt/Ba/Co/Al2O3, Pt/Ba/Ni/Al2O3, and Pt/Ba/Cu/Al2O3 catalysts compared with Pt/Ba/Al2O3, Pt/Fe/Al2O3, Pt/Co/Al2O3, Pt/Ni/Al2O3, Pt/Cu/Al2O3 and Pt/Al2O3 catalysts. The NOx purification activity of Pt/Ba/Fe/Al2O3 catalyst was the highest of all the catalysts investigated in this paper after an aging treatment. That of the aged Pt/Ba/Co/Al2O3 and Pt/Ba/Ni/Al2O3 catalysts was essentially the same as that of the aged Pt/Ba/Al2O3 catalyst, while that of the aged Pt/Ba/Cu/Al2O3 and Pt/Cu/Al2O3 catalysts was substantially lower than the others.

The Fe-compound on the aged Pt/Ba/Fe/Al2O3 catalyst has played a role in decreasing the sulfur content on the catalyst after exposure to simulated reducing gas compared with the Pt/Ba/Al2O3 catalyst without the Fe-compound. XRD and EDX show that the Fe-compound inhibits the growth in the size of BaSO4 particles formed on the Pt/Ba/Fe/Al2O3 catalyst under oxidizing conditions in the presence of SO2 and promotes the decomposition of BaSO4 and desorption of the sulfur compound under reducing conditions.  相似文献   


14.
A novel catalyst based on copper-silver was developed to solve the contradiction between the high conversion temperature of Cu-based catalyst and low N2 selectivity of Ag-based catalyst during selective oxidation of ammonium gas. The Cu-Ag-based catalyst (Cu 5 wt.%-Ag 5 wt.%/Al2O3) displayed a relatively low complete conversion temperature (<320 °C) with a high N2 selectivity (>95%). Increasing loading of Cu and Ag decreases N2 selectivity. The low N2 selectivity of Ag-based catalyst is possibly related to the formation of Ag2O crystals. Improvement of N2 selectivity of Ag-based catalyst was obtained by doping Cu to decrease crystallized Ag2O phase. The temperature programmed reaction (TPR) data show that N2O is the main byproduct of oxidation of ammonia at temperature lower than 200 °C. Two bands of nitrate species at 1541 and 1302 cm−1 were observed on Ag 10 wt.%/Al2O3 at the temperature higher than 250 °C, which indicates the formation of NOx during the selective catalytic oxidation of ammonia. No nitrate species was observed on Cu 10 wt.%/Al2O3 and Cu 5 wt.%-Ag 5 wt.%/Al2O3, while only one nitrate species (1543 cm−1) existed on Cu 10 wt.%-Ag 10 wt.%/Al2O3. We proposed that mixing Ag with Cu inhibited the formation of NOx during the selective catalytic oxidation of ammonia over Cu-Ag/Al2O3.  相似文献   

15.
A multi-component NOx-trap catalyst consisting of Pt and K supported on γ-Al2O3 was studied at 250 °C to determine the roles of the individual catalyst components, to identify the adsorbing species during the lean capture cycle, and to assess the effects of H2O and CO2 on NOx storage. The Al2O3 support was shown to have NOx trapping capability with and without Pt present (at 250 °C Pt/Al2O3 adsorbs 2.3 μmols NOx/m2). NOx is primarily trapped on Al2O3 in the form of nitrates with monodentate, chelating and bridged forms apparent in Diffuse Reflectance mid-Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. The addition of K to the catalyst increases the adsorption capacity to 6.2 μmols NOx/m2, and the primary storage form on K is a free nitrate ion. Quantitative DRIFTS analysis shows that 12% of the nitrates on a Pt/K/Al2O3 catalyst are coordinated on the Al2O3 support at saturation.

When 5% CO2 was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by 45% after 1 h on stream due to the competition of adsorbed free nitrates with carboxylates for adsorption sites. When 5% H2O was included in a feed stream with 300 ppm NO and 12% O2, the amount of K-based nitrate storage decreased by only 16% after 1 h, but the Al2O3-based nitrates decreased by 92%. Interestingly, with both 5% CO2 and 5% H2O in the feed, the total storage only decreased by 11%, as the hydroxyl groups generated on Al2O3 destabilized the K–CO2 bond; specifically, H2O mitigates the NOx storage capacity losses associated with carboxylate competition.  相似文献   


16.
Oxidation activity and stability under reaction was investigated for a series of mixed oxide catalysts, doped or not by a precious metal (Pd, Pt). The reaction feedstock, containing CO, H2, CH4, CO2 and H2O, simulated gases issued from H2 production processes for fuel cells. Contrarily to conventional noble metal catalysts, mixed oxide samples present generally good stability under reaction at high temperature. The activities measured for the perovskite and hexaaluminate catalysts, are however largely lower than that of the reference Pd/Al2O3 catalyst. High activities were obtained after impregnation of 1.1 wt.% Pd or 0.8 wt.% Pt on the hexaaluminates samples. Even if Pd/Al2O3 was found to present a high activity, this sample suffered from drastic deactivation at 700 °C. Better stability were obtained on perovskite. Furthermore, doping hexaaluminate by Pt led to samples with good activities and high stability. Even if better activities were obtained by doping the hexaaluminate samples by Pd, the Pd/BaAl12O19 strongly deactivated, as it was previously observed for the reference catalyst. Interestingly, this Pd deactivation was not observed when Pd was impregnated on the Mn substituted hexaaluminate, leading to a stable and active catalyst. This suggests that it is possible to stabilize the palladium in its oxidized form at high temperature (700 °C) on the surface of some supports.  相似文献   

17.
A study of CO oxidation by O2 over Pt catalysts, promoted by MnOx and CoOx, is described. The activities of Pt/SiO2, Pt/MnOx/SiO2 and Pt/CoOx/SiO2 are compared with commercial Pt/Al2O3, Pt/Rh/Al2O3 and Pt/CeOx/Al2O3 catalysts. Since these catalysts differ in dispersion and weight loading of platinum, the turnover frequencies are also compared. The following order in activity in CO oxidation after a reductive pretreatment is found: Pt/CoOx/SiO2 > Pt/MnOx/SiO2, Pt/CeOx/Al2O3 > Pt/Al2O3, Pt/Rh/Al2O3, Pt/SiO2. Over Pt/CoOx/SiO2 CO is already oxidised at room temperature. Possible models to account for the high activity of Pt/CoOx/SiO2 in the CO/O2 reaction are presented and discussed. Partially reduced metal oxides are necessary to increase the activity of the Pt/CoOx/SiO2, Pt/MnOx/SiO2 or Pt/CeOx/Al2O3 catalysts. It was shown that mild ageing treatments did not affect the activity of the Pt/CoOx/SiO2 catalyst in CO oxidation.  相似文献   

18.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

19.
Catalytic wet air oxidation (CWAO) of phenol with molecular oxygen using a home-made Fe/activated carbon catalyst at mild operating conditions (100–127 °C; 8 atm) has been studied in a trickle-bed reactor. Ring compounds (hydroquinone, p-benzoquinone and p-hydroxybenzoic acid) and short-chain organic acids (maleic, malonic, oxalic, acetic and formic) have been identified as intermediate oxidation products. CWAO experiments using each one of these intermediates as starting compound have been carried out (at 127 °C and 8 atm) in order to elucidate the reaction pathway. It was found that phenol is oxidized through two different ways. It can be either para-hydroxylated to hydroquinone, which is instantaneously oxidized to p-benzoquinone or para-carboxylated to p-hydroxybenzoic acid. p-Benzoquinone is majorly mineralized to CO2 and H2O through oxalic acid formation whereas p-hydroxybenzoic acid gives rise to short-chain acids. Only acetic acid showed to be refractory to CWAO under the operating conditions used in this work. The catalyst avoids the presence of ring-condensation products in the reactor effluent which were formed in absence of it. This is an additional important feature because of the ecotoxicity of such compounds.  相似文献   

20.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号