首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion properties of finite element models for aeroacoustic propagation based on the convected scalar Helmholtz equation and on the Galbrun equation are examined. The current study focusses on the effect of the mean flow on the dispersion and amplitude errors present in the discrete numerical solutions. A general two‐dimensional dispersion analysis is presented for the discrete problem on a regular unbounded mesh, and results are presented for the particular case of one‐dimensional acoustic propagation in which the wave direction is aligned with the mean flow. The magnitude and sign of the mean flow is shown to have a significant effect on the accuracy of the numerical schemes. Quadratic Helmholtz elements in particular are shown to be much less effective for downstream—as opposed to upstream—propagation, even when the effect of wave shortening or elongation due to the mean flow is taken into account. These trends are also observed in solutions obtained for simple test problems on finite meshes. A similar analysis of two‐dimensional propagation is presented in an accompanying article. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports a detailed analysis on the numerical dispersion error in solving one-, two-, and three-dimensional acoustic problems governed by the Helmholtz equation using the gradient weighted finite element method (GW-FEM) in comparison with the standard FEM and the modified methods presented in the literatures. The discretized system equations derived based on the gradient weighted operation corresponding to the considered method are first briefed. The discrete dispersion relationships relating the exact and numerical wave numbers defined in different dimensions are then formulated, which will be further used to investigate the dispersion effect mainly caused by the approximation of field variables. The influence of nondimensional wave number and wave propagation angle on the dispersion error is detailedly studied. Comparisons are made with the classical FEM and high-performance algorithms. Results of both theoretical and numerical experiments show that the present method can effectively reduce the pollution effect in computational acoustics owning to its crucial effectiveness in handing the dispersion error in the discrete numerical model.  相似文献   

3.
This paper presents a study of wave propagation in an infinite beam on a random Winkler foundation. The spatial variation of the foundation spring constant is modelled as a random field and the influence of the correlation length is studied. As it is impossible to determine the general stochastic Green’s function, the configurational average of the Green’s function and its correlation function are considered. These functions are found through the transformation of the stochastic equation of motion into the Dyson equation for the mean or coherent field and the Bethe–Salpeter equation for the field correlation, as used in the study of wave propagation in random media. The approximate solutions of the Dyson and the Bethe–Salpeter equations are validated by means of a Monte Carlo simulation and compared with the results of a classical Neumann expansion method. Although both methods only involve the second order statistics of the random field, the approximation of the Dyson and the Bethe–Salpeter equations gives better results than the Neumann expansion, at the expense of a larger computational effort. Furthermore, the results show that a small spatial variation of the spring constant has an influence on the response if the correlation length and the wavelength have a similar order of magnitude, while the waves in the beam cannot resolve the spatial variation in the case where the correlation length is much smaller than the wavelength.  相似文献   

4.
覆盖层为功能梯度材料弹性半平面中的Love波   总被引:1,自引:0,他引:1  
对均匀各向同性弹性半平面上覆盖一层功能梯度材料中存在的Love波的频散问题进行了研究,给出了Love波频散方程的一般形式。利用WKBJ近似理论,给出了功能梯度材料层的位移、应力近似解析解,导出了Love波WKBJ近似频散方程的一般形式。该文以功能梯度材料层的剪切弹性模量和质量密度沿厚度方向均为指数函数变化为例,进行了实例计算和分析,给出了频散曲线,讨论了Love波在功能梯度材料覆盖层弹性半平面中传播的一般性质。这些结论对无损检测和反问题分析方法的改进提供理论依据。  相似文献   

5.
The frequency and group velocity dispersion behaviors, and characteristic surfaces of waves in a hybrid multilayered piezoelectric circular cylinder are investigated. The associated frequency dispersion equation is developed using an analytical-numerical method. In this method, the cylinder is modeled using the three-nodal-line layer element; the coupling between the elastic field and the electric field is considered in each element. A system of governing differential equations of each layer element is obtained following the Hamilton Principle. The phase velocity and slowness as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces, e.g. the phase velocity, slowness and wave surfaces as well as the group velocity, slowness and wave surfaces, are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. A corresponding program code is developed and numerical examples are presented for hybrid multilayered piezoelectric circular cylinders with two ratios of radius to thickness.  相似文献   

6.
直角坐标系下的时域有限差分方法在水声传播仿真时由于计算量太大而较少应用。文章利用时域有限差分方法推导了柱坐标系下的声波方程的近似表达式,结合复频移完全匹配层建立浅海声传播模型,在减少计算量的同时准确预报了传播信号声压的时域波形、传播声场的时空演变过程以及频域传播损失曲线。在柱坐标系下使用时域有限差分方法仿真Pekeris传播环境声场并与简正波和波数积分模型进行对比,分析了时域有限差分水声传播模型的适用范围。结果表明,时域有限差分方法仿真浅海中近程传播声场精度较高。模型的稳定性与时间和空间网格大小有关,声源频率越高,空间和时间网格划分越小,计算量越大。数值离散带来的频散误差累积会导致远场传播声场计算不准确,因此时域有限差分水声传播模型更适用于低频中近程声场计算。  相似文献   

7.
This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone. It offers a solution with an exact closed form. The authors got and examined numerically the general frequency equation for poroelastic bone. Moreover, they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation. Unlike the results of previous studies, the authors noticed little frequency dispersion in the wet bone. The proposed model will be applicable to wide-range parametric projects of bone mechanical response. Examining the vibration of surface waves in rotating cylindrical, long human bones under the magnetic field can have an impact. The findings of the study are offered in graphs. Then, a comparison with the results of the literature is conducted to show the effect of rotation and magnetic field on the wave propagation phenomenon. It is worth noting that the results of the study highly match those of the literature.  相似文献   

8.
The propagation of horizontally polarised shear waves in an internal irregular magnetoelastic self-reinforced stratum which is sandwiched between two semi-infinite magnetoelastic self-reinforced media is studied. Two shapes of irregularities on the interface of layer and lower semi-infinite media are considered, namely rectangular and parabolic. The dispersion equation is obtained in closed form. The combined effects of reinforcement, magnetic field and irregularity are also studied. Some important features of the results are highlighted. It is also observed that the dispersion equation is in agreement with the classical Love-type wave equation for an isotropic layer sandwiched between two isotropic half-spaces in the absence of reinforcement, magnetic field and irregularity.  相似文献   

9.
重力对具有表面层的半空间中Rayleigh波的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
寿旋  夏唐代 《振动与冲击》2011,30(3):191-194
重力对具有表面层的半空间中Rayleigh波具有重要的影响,假设表面层和半空间均为均匀各向同性介质,首先利用考虑重力作用的运动方程得出了重力影响下具有表面层的半空间中Rayleigh波的弥散方程。该方程经退化后得出了不受重力作用时的弥散方程,且与忽略重力时得到的方程完全一致。然后利用数值方法得到了重力影响下的Rayleigh波弥散曲线,分析了泊松比和表面层的厚度的影响,结果表明泊松比和表面层的厚度对弥散曲线具有明显影响。  相似文献   

10.
Summary. We study wave propagation in a piezoelectric ceramic half-space with a thin semiconductor film and an air gap between the film and the half-space. Two-dimensional equations for a thin film are used to model the semiconductor film and the air gap. The half-space is governed by the three-dimensional equations of linear piezoelectricity. It is shown that an anti-plane wave can propagate in such a system. An equation that determines the dispersion relation of the wave is obtained. Solutions to the equation show that the wave has both dispersion and attenuation, and can be amplified by a biasing dc electric field.  相似文献   

11.
利用波传播方法从理论上分析了无限介质包围的充液管道中导波的频散特性.基于经典的薄壳振动理论,求出了不同传输路径中的波数表达式,并利用数值方法对振动方程进行解析研究,分析管道参数和无限介质对导波频散特性的影响.结果表明,管道厚径比、管壁厚度、无限介质和管壁材料与导波频散密切相关.其中管道厚径比和管壁材料对流体主导波(s1...  相似文献   

12.
The propagation of ultrasonic guided waves in an elastic hollow cylinder with a viscoelastic coating is studied. The principle motivation is to provide tools for performing a guided wave, nondestructive inspection of piping and tubing with viscoelastic coatings. The theoretical boundary value problem is solved that describes the guided wave propagation in these structures for the purpose of finding the guided wave modes that propagate with little or no attenuation. The model uses the global matrix technique to generate the dispersion equation for the longitudinal modes of a system of an arbitrary number of perfectly bonded hollow cylinders with traction-free outer surfaces. A numerical solution of the dispersion equation produces the phase velocity and attenuation dispersion curves that describe the nature of the guided wave propagation. The attenuation dispersion curves show some guided wave modes that propagate with little or no attenuation in the coated structures of interest. The wave structure is examined for two of the modes to verify that the boundary conditions are satisfied and to explain their attenuation behavior. Experimental results are produced using an array of transducers positioned circumferentially around the pipe to evaluate the accuracy of the numerical solution.  相似文献   

13.
在电磁弹性多层结构模型的基础上, 通过本构方程和场方程推导出Love 波在电磁弹性介质中的波动方程。利用传递矩阵方法, 给出了一定边界条件下Love 波在该结构中的频散方程。通过对算例进行分析, 得出了Love 波在电磁弹性多层结构中传播的一些特性。   相似文献   

14.
Applying the Stroh theory and based on the works of Hwu and Ting (1989), the complex function solution of stress and displacement fields around an open borehole in intrinsic anisotropic formation under horizontal terrestrial stress field is obtained. For cross-dipole flexural wave propagation along borehole axis, using the perturbation method, the acoustoelastic equation describing the relation between the alteration in phase velocity and terrestrial stress as well as formation intrinsic anisotropy is derived. At last, the numerical examples are provided for both the cases of fast and slow formation where the symmetry axis of a transversely isotropic (TI) formation makes an angle with the borehole axis. The phase velocity dispersion curves of borehole flexural wave and the corresponding velocity-stress coefficient are investigated. Computational results indicate that different from the stressed intrinsic isotropic formation situation, the variation in the phase velocity of flexural wave in stressed intrinsic anisotropic formation is dominated by two factors, one is the intrinsic formation anisotropy itself and the other is the stress-induced anisotropy. The former factor merely causes the borehole flexural wave split while the latter factor induces the dispersion curves intersection for two flexural waves polarized orthogonally. The combined effect of the two factors could strengthen or weaken the phenomenon of crossover for flexural wave dispersion curves. Thus, the dispersion curves of flexural waves may not intersect even under the unequal horizontal terrestrial stress field, whereas it is still possible to observe the crossover of the flexural wave dispersion curves under the equal horizontal terrestrial stress field. The polarized direction of the low-frequency fast flexural wave is no longer consistent with the direction of the maximum horizontal terrestrial stress all the time. Therefore, the crossover of the borehole flexural wave dispersion curves means that the terrestrial stress must exist. On the other hand, we can't exclude the possibility of the existence of terrestrial stress even if the flexural wave dispersion curves do not intersect. Based on the above researches, the method for terrestrial stress inversion from borehole flexural wave dispersion curves obtained by cross-dipole sonic logging in stressed intrinsic anisotropic formation is simply discussed.  相似文献   

15.
气动噪声的直接模拟对数值格式的色散、耗散特性提出了严格的要求。基于描述声波的线性双曲方程,运用本征值方法分析了高阶Nodal-DG方法的色散、耗散特性。结果发现,对于任意给定的m阶多项式基函数,数值波解有m+1个值,但仅有一个能够表示对应微分方程的物理波传播方式,其余的都是寄生波,且两种波型的传播方向相反。通过与Tam的DRP格式和Lele的六阶紧致格式进行比较,发现在相同的计算精度下,Nodal-DG方法的有效求解波数范围介于DRP格式和六阶紧致格式之间。通过对初始扰动为高斯波形的计算比较发现,在较少的网格数下,Nodal-DG方法的计算结果可以与紧致格式的计算结果相比,但优于DRP格式的计算结果,非常适合于气动声学的数值模拟,为气动声场的直接计算提供了一种新的方法  相似文献   

16.
17.
Abstract

We examine the photonic band structure of two-dimensional (2D) arrays of dielectric holes using the coherent microwave transient spectroscopy (COMITS) technique. Such 2D hole arrays are constructed by embedding low-index rods (air) in a dielectric background of higher-index Stycast material (n = 3·60). The dispersion relation for electromagnetic wave propagation in these photonic crystals is directly determined using the phase sensitivity of COMITS. We find that both the square and triangular lattice structures exhibit photonic band gaps that are common to both polarizations for all wave-vectors along major symmetry axes. In addition, the connectivity of the high-index dielectric and the opening of a large gap for propagation with E field perpendicular to the hole cylinders are found to be important criteria for generating a large absolute photonic band gap.  相似文献   

18.
Summary This paper deals with the scattering of antiplane shear waves in a metal matrix composite reinforced by fibers with interfacial layers. We assume same-size cylindrical inclusions and same-thickness interface layers with nonhomogeneous elastic properties. The effective complex wave numbers follow from the coherent wave equation which depends only upon the scattering amplitude of the single scattering problem. Effective elastic constants can be obtained from phase velocities of coherent waves. Numerical calculations for an SiC-fiber-reinforced Al composite are carried out, and the effect of interface properties on scattering cross section, phase velocity, attenuation of coherent plane wave, and effective elastic constant is shown graphically.  相似文献   

19.
In this paper, we propose a different method to study wave propagation in longitudinally invariant waveguides with arbitrary index profile. In our method, both the electric field and the refractive index profile are expanded into two Fourier cosine series. With these series substituted into the wave equation, a differential matrix equation can then be obtained. We show here that such a matrix equation can be solved and an explicit expression for the wave field at any longitudinal position along an optical waveguide can be obtained. The solution proposed in this method can thus exclude the use of the beam propagation algorithm. This study demonstrates that our approach yields the same results as those obtained by using commercial softwares in which a beam propagation method with the Padé approximation is used.  相似文献   

20.
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号