首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
谢志强 《计算机仿真》2010,27(8):110-113
在预测网络安全问题的研究中,针对网络入侵检测优化问题,为了改变传统入侵检测算法存在训练精度高,预测精度相当低的过拟合难题,提出一种基于遗传算法的支持向量机。支持向量机首先利用遗传算法搜索最优的支持向量机参数,然后用得到的最优参数来训练,利用训练得到的最优算法模型对测试集进行建模预测。并利用支持向量机对KDD 1999 CUP数据集进行了仿真。实验结果表明,方法在降低训练时间的同时有着很好的检测率,优于经典的神经网络算法,方法提高了预测效率。  相似文献   

2.
入侵检测实质上是一个分类的问题,对于提高分类精度是十分重要的.支持向量机(SVM)是一个功能强人的用于解决分类问题的工具.基于支持向量机的入侵检测精度较高,但如何获得更高的精度是一个新的问题.本文利用基于支持向量机和遗传算法(GA)的入侵检测来解决这些问题.我们首先利用遗传算法进行特征选择及优化,然后使用支持向量机模型...  相似文献   

3.
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别。由于支持向量机的参数对识别性能有较大影响,因此这篇文章文采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用ORL人脸库进行仿真实验,得到了较好的识别效率。  相似文献   

4.
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别:由于支持向量机的参数对识别性能有较大影响,因此这篇文章采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用0RL人脸库进行仿真实验,得到了较好的识别效率。  相似文献   

5.
基于改进遗传算法的支持向量机参数优化   总被引:2,自引:0,他引:2  
支持向量机是一种非常有前景的学习机器,但是,支持向量机参数的选取一直没有一套成熟的理论,这给支持向量机的应用带来了很大的不便.为此,本文提出了基于改进遗传算法的支持向量机的参数优化方法,利用遗传算法的全局搜索能力得到支持向量机的最优参数值.仿真实验结果表明,得到的参数可使支持向量机具有良好的泛化性能,此方法切实有效.  相似文献   

6.
支持向量机是一种基于小样本学习的有效工具,作为分类器被认为具有很高的推广性能,无需先验知识。但是参数的选取与支持向量机的识别性能是相关的,核函数参数σ2和惩罚因子C对支持向量机识别性能会产生很大的影响。针对支持向量机在人脸识别问题中的应用,提出了一种基于遗传算法(GA)的参数选择优化方法。利用笔者曾提出的基于小波分解和积分投影的人脸特征提取算法对人脸图像进行特征参数提取,然后利用优化的支持向量机进行识别。实验结果表明,该方法是有效的。  相似文献   

7.
采用自适应遗传算法(AGA)优化筛选改进高斯核函数支持向量机(SVM)参数模型进行人脸特征分类。支持向量机的泛化性能主要取决于核函数类型和核函数参数及惩罚系数C,本文在传统高斯核函数基础上提出改进高斯核函数作为支持向量机的非线性映射函数,并使用自适应遗传算法优化筛选核函数参数和支持向量机惩罚系数,将优化后的SVM模型用于人脸库进行实验仿真。实验结果表明,本文方法比传统高斯核函数支持向量机分类器模型有更高识别率。  相似文献   

8.
基于遗传算法和支持向量机的乳腺肿块识别   总被引:3,自引:0,他引:3  
徐胜舟  裴承丹 《计算机仿真》2015,32(2):432-435,440
乳腺癌是中老年妇女的主要死因之一。为提高乳腺肿块识别性能,在对可疑肿块提取包括灰度、形态、纹理在内的多种特征的基础上,提出一种基于改进遗传算法和支持向量机的肿块识别方法。首先,将待选特征编码成二进制染色体,以支持向量机分类结果和被选特征的个数来构造个体适应度,然后通过遗传算法找到最优特征子集作为支持向量机的输入。在2267个病例数据上采用10折交叉验证法进行仿真对比实验。结果表明,所提出的方法对肿块识别具有较高的正确率,可为乳腺肿块的计算机辅助检测提供参考。  相似文献   

9.
针对支持向量机算法在回归预测时由于参数选取不当导致过学习或欠学习的情况,提出一种基于改进遗传算法的支持向量机参数优化模型。该模型将遗传算法与支持向量机结合,利用遗传算法进化搜索的原理对支持向量机具有重要意义的惩罚参数、核参数和损失函数同时优化。实验选取3组标准数据集作为测试数据集,并将改进算法同时与遗传算法、网格寻址算法、粒子群算法进行仿真测试结果对比。实验结果表明改进的算法较大地提高了支持向量机算法整体的寻优能力。  相似文献   

10.
基于模糊支持向量机的网络入侵检测研究   总被引:3,自引:0,他引:3  
李华  张简政 《计算机科学》2005,32(11):77-80
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。  相似文献   

11.
基于遗传算法和支持向量机的肿瘤分子分类   总被引:1,自引:0,他引:1  
提出了一种基于遗传算法(GA)和支持向量机(SVM)的用于肿瘤分子分类和特征基因选择的新方法。该方法针对基因表达数据样本少维数高的特点,先根据基因的散乱度滤掉大量分类无关基因,而后使用相关性分析去除分类冗余基因,得到一个候选基因子集,用遗传算法搜索候选特征基因空间,发现在支持向量机分类器上具有好的分类性能的且含基因个数较少的特征子集。把这种GA/SVM方法应用到结肠癌和急性白血病基因表达谱,能选出多个取得较高分类精度的较小基因子集,实验结果表明了该方法的有效性。  相似文献   

12.
In the objective world, how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning. Fuzzy support vector machine (FSVM) not only deals with the classification problems for training samples with fuzzy information, but also assigns a fuzzy membership degree to each training sample, allowing different training samples to contribute differently in predicting an optimal hyperplane to separate two classes with maximum margin, reducing the effect of outliers and noise, Quantum computing has super parallel computing capabilities and holds the promise of faster algorithmic processing of data. However, FSVM and quantum computing are incapable of dealing with the complexity and uncertainty of big data in an efficient and accurate manner. This paper research and propose an efficient and accurate quantum fuzzy support vector machine (QFSVM) algorithm based on the fact that quantum computing can efficiently process large amounts of data and FSVM is easy to deal with the complexity and uncertainty problems. The central idea of the proposed algorithm is to use the quantum algorithm for solving linear systems of equations (HHL algorithm) and the least-squares method to solve the quadratic programming problem in the FSVM. The proposed algorithm can determine whether a sample belongs to the positive or negative class while also achieving a good generalization performance. Furthermore, this paper applies QFSVM to handwritten character recognition and demonstrates that QFSVM can be run on quantum computers, and achieve accurate classification of handwritten characters. When compared to FSVM, QFSVM’s computational complexity decreases exponentially with the number of training samples.  相似文献   

13.
支持向量机作为一种新的统计学习方法,在说话人识别中得到了广泛应用.本文针对支持向量机在说话人辨识中的大样本训练耗时问题,提出对语音参数进行模糊核聚类的约简方法,选择聚类边界的语音参数作为支持向量,可以在不影响识别率的情况下,减少支持向量机的训练量.并通过实验验证了该方法的有效性.  相似文献   

14.
基于支持向量机的非线性系统模型预测控制   总被引:5,自引:1,他引:5  
支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则.使它较好的解决了小样本情况下的学习问题。又由于其采用了核函数思想.使它把非线性问题转化为线性问题来解决,降低了算法的难度.具有全局最优、良好泛化能力等优越性能.得到广泛的研究。基于上述特性提出了一种基于支持向量机的非线性模型预测控制结构.其中使用遗传算法来求解预测控制律.随后用计算机仿真证明了此控制算法的正确性和有效性。  相似文献   

15.
模糊多类支持向量机及其在入侵检测中的应用   总被引:29,自引:0,他引:29  
针对支持向量机理论中现存的问题:多类分类问题和对于噪音数据的敏感性,提出了一种模糊多类支持向量机算法.该算法是在Weston等人提出的多类SVM分类器的直接构造方法中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成员函数得到相应的值,由此可以得到不同的惩罚值,并且在构造分类超平面时,可以忽略那些对分类结果影响很小的数据.在充分的数值实验基础上,将文中提出的方法应用于当前一个重要的应用领域——计算机网络入侵检测问题,并得到了较好的实验结果.理论分析与数值实验都表明,该算法是切实可行的,并具有良好的鲁棒性。  相似文献   

16.
基于样本之间紧密度的模糊支持向量机方法   总被引:34,自引:0,他引:34  
张翔  肖小玲  徐光祐 《软件学报》2006,17(5):951-958
针对传统支持向量机方法中存在对噪声或野值敏感的问题,提出了一种基于紧密度的模糊支持向量机方法.在确定样本的隶属度时,不仅考虑了样本与类中心之间的关系,还考虑了类中各个样本之间的关系.通过样本之间的紧密度来描述类中各个样本之间的关系,利用包围同一类中样本的最小球半径大小来度量样本之间的紧密度.样本的隶属度依据样本在球中的位置,按照不同的规律确定与基于样本与类中心之间关系构建的模糊支持向量机方法相比,该方法有利于将野值或含噪声样本与有效样本进行区分.实验结果表明,与传统支持向量机方法及基于样本与类中心之间关系的模糊支持向量机方法相比,基于紧密度的模糊支持向量机方法具有更好的抗噪性能及分类能力.  相似文献   

17.
一种基于支持向量机的图像数字水印算法   总被引:12,自引:0,他引:12       下载免费PDF全文
为了使数字水印综合性能更好,根据图像邻域像素之间具有很强的相关性这一特点,提出了一种基于支持向量机的图像水印算法。该算法将支持向量机的思想用于数字水印,并取得了较好的效果。由于支持向量机在有限训练样本的情况下具有很好的学习和泛化能力,因此,可以首先利用回归型支持向量机较好地建立图像邻域像素之间的关系模型,然后,通过调整模型的输出值与中心像素值之间的大小关系来嵌入或提取水印。实验表明,用该技术嵌入水印后的图像不仅具有很好的图像感知质量和较强的鲁棒性,对图像增强、JPEG压缩、噪声、几何剪切等抵抗强,而且安全性好、实用性较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号