首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
溶胶-凝胶法制备环氧树脂/SiO2杂化材料,利用FTIR、SEM和综合热分析仪对杂化材料的结构、显微形态及热性能进行了表征.结果表明,杂化材料中SiO2与环氧树脂两相间存在氢键作用;SiO2质量分数<7%时SiO2与环氧树脂之间无明显相界面,可获得有机聚合物链段与无机网络互穿的有机/无机杂化材料;SiO2质量分数为11%时材料具有最佳耐热性能.  相似文献   

2.
以硅酸钠在HCl溶液中的水解,经四氢呋喃(THF)萃取,制备聚硅酸溶胶,再与聚醋酸乙烯酯(PVAC)的THF溶液混合,经溶胶-凝胶过程制备了PVAC/SiO2有机/无机杂化材料.用扫描电镜(SEM),红外光谱(IR),X射线衍射,热失重及透光率等的分析测试,对制备的PVAC/SiO2杂化材料进行了结构与性能的研究.结果表明:本法制备的杂化材料中SiO2在PVAC的基体中分布均匀,SiO2在非晶态的PVAC中亦呈无定形态,杂化材料的硬度、软化温度和热分解温度都比纯PVAC有较大的提高;SiO2含量少于40%的杂化材料其断裂伸长率、屈服强度和断裂强度也比纯PVAC提高;另外,还发现在制备过程中加入少许偶联剂KH-570后,杂化材料中的有机-无机相间的相容性增加,不易发生相分离,材料的透光性能也大为改善.  相似文献   

3.
采用溶胶-凝胶法以正硅酸乙酯(TEOS)和钛酸四丁酯(TBOT)为原料制备了SiO2/TiO2溶胶,并与PVA进行杂化,得到PVA/SiO2/TiO2杂化溶胶,陈化后用拉丝法制得PVA/SiO2/TiO2杂化纤维。研究了PVA和TBOT对杂化溶胶的黏度变化与成纤性能的影响,并对杂化纤维的性能进行了测试。用FT-IR、EDS、XRD和TG对制得的纤维进行了表征。结果表明,PVA有利于改善杂化溶胶的成纤性能,随钛含量增加杂化溶胶的黏度变化速度加快;杂化纤维中各组分分布较为均匀,通过杂化限制了PVA的结晶并改善了PVA的耐热性能。  相似文献   

4.
PVA/SiO2杂化纤维的制备与表征   总被引:5,自引:0,他引:5  
采用溶胶凝胶法制备了不同SiO2含量的PVA/SiO2杂化溶胶,通过拉丝得到杂化纤维。对溶胶的可纺性和杂化纤维的性能进行了研究。结果表明,SiO2溶胶与PVA/SiO2杂化溶胶在反应过程中的黏度变化规律相似,黏度均存在三个变化区间,随PVA含量的增加,杂化溶胶的可纺性能改善。FT-IR表明,杂化纤维中PVA与SiO2之间形成了化学键结合;XRD、DSC和光学显微分析表明,杂化使PVA结晶能力明显降低;热失重和耐溶剂研究表明,PVA与SiO2之间的化学键结合使杂化纤维具有良好的耐热性能。  相似文献   

5.
采用溶胶-凝胶法制备了SiO2及A12O3溶胶,并将其掺入到聚酰胺酸基体中,得到无机纳米SiO2-Al2O3/聚酰亚胺杂化膜,并对其结构性能进行了研究.实验表明,薄膜材料中无机纳米SiO2和Al2O3粒子分散均匀,与有机相存在键合;材料热分解温度有所提高.  相似文献   

6.
低收缩块状PMMA/SiO_2杂化材料制备及性能表征   总被引:1,自引:0,他引:1  
以甲基丙烯酸甲酯(MMA)、正硅酸乙酯(TEOS)和硅烷偶联剂(MPMS)为原料,采用溶胶-凝胶法制备出低收缩、具有良好光学性能的PMMA/SiO2杂化材料。通过透射电子显微镜、差热分析、红外吸收光谱和紫外光-可见分光光度计表征了杂化材料的微观形貌、热性能和透明性。结果表明材料的网络结构相对比较均匀,在可见光波长范围内材料均一性好;有机相和无机相之间是通过共价键相互连接的,没有出现有机相、无机相分离现象;杂化材料的透光率约90%。  相似文献   

7.
通过共混法制备丙烯酸酯聚合物/SiO2(PA/SiO2)杂化乳液,成膜过程添加醇类共溶剂促进偶联改性的聚合物与硅溶胶(SiO2)颗粒之间发生溶胶-凝胶反应。SEM图证实,无共溶剂的杂化涂膜SiO2颗粒趋于表面迁移及团聚,而异丙醇作共溶剂时SiO2颗粒在杂化涂膜表面均匀分散。成膜过程中添加15%异丙醇,杂化涂膜的耐化学品性和硬度等性能最佳。水接触角分析证实,添加共溶剂的杂化涂膜具有更好的耐水性能。AFM图表明,无共溶剂的杂化涂膜表面存在高度为217.9nm的团聚体;添加异丙醇的杂化涂膜表面粒子高度为65.97nm,略高于SiO2颗粒粒径,说明SiO2颗粒均匀分散在杂化涂膜表面。  相似文献   

8.
PMMA/SiO_2-TiO_2杂化纤维的制备与表征   总被引:2,自引:0,他引:2  
以正硅酸乙酯和钛酸四丁酯为前驱体,乙烯基三乙氧基硅烷为偶联剂,采用溶胶凝胶原位聚合法制备了聚甲基丙烯酸甲酯/二氧化硅-二氧化钛(PMMA/SiO2-TiO2)杂化溶胶,陈化后用提拉法制得杂化纤维。研究了溶胶的杂化反应机理;使用红外光谱(IR)、扫描电子显微镜(SEM)、紫外-可见光谱(UV-Vis)、荧光光谱(FL)和热重分析(TGA)分析了杂化纤维的结构与性能。结果表明,PMMA与SiO2-TiO2之间通过化学键连接;纤维直径为150μm,在纤维内部有机无机相间形成均一的连续相;TiO2的引入增加了其抗紫外性;杂化纤维具有荧光性能;其耐热性能优于纯PMMA。  相似文献   

9.
PMMA/SiO2杂化纤维的制备及表征   总被引:1,自引:0,他引:1  
以正硅酸乙酯(TEOS)和PMMA低聚体为原料,乙烯基三乙氧基硅烷(VTEOS)为偶联剂,采用溶胶-凝胶法制备了PMMA/SiO2杂化溶胶,陈化后用提拉法制得PMMA/SiO2杂化纤维。研究了溶胶的杂化反应机理、成纤性能;使用IR、SEM、TGA及DSC分析了杂化纤维的结构与性能。结果表明,该杂化溶胶具有很好的拉丝性能,黏度为180 Pa.s~300 Pa.s时的成纤性能好,所制得的杂化纤维,其中PMMA与SiO2之间通过化学键连接,在纤维内部有机无机相间形成均一的连续相;其耐热性能优于纯PMMA。  相似文献   

10.
以正硅酸乙酯(TEOS)和聚甲基丙烯酸丁酯(PBMA)为前躯体,乙烯基三乙氧基硅烷(VTEOS)为偶联剂,通过溶胶-凝胶法制备了SiO2纤维和PBMA/SiO2杂化纤维,并使用IR、SEM、TGA等进行了结构与性能表征,研究了溶胶的杂化反应机理、成纤性能.结果表明:硅烷偶联剂的引入使得PBMA-SiO2杂化纤维均匀性较好,纤维中有机相与无机相之间通过化学键连接,实现了有机-无机组分的充分贯穿;其耐热性能优于纯PBMA.  相似文献   

11.
纳米SiO2改性聚酰亚胺的研究进展   总被引:5,自引:1,他引:4  
聚酰亚胺(PI)作为一种功能材料,具有良好的介电性、优良力学性能,已被广泛应用于航空航天及微电子领域,但其明显的吸水性和热膨胀性限制了其在高温和精密状态下的应用。纳米SiO2具有很低的热膨胀系数和较低的吸水性,非常适合于对PI的改性。介绍了纳米SiO2的生产原理、纳米SiO2/PI复合材料的制备方法、性能及其在气体分离膜、光电材料、摩擦材料及包装材料方面的应用,并对这类材料的研究方向提出了自己的建议。  相似文献   

12.
为增强废印刷电路板非金属粉(WPCBP)与聚合物基体之间的界面结合作用,采用溶胶-凝胶法在WPCBP表面原位负载了一层纳米二氧化硅粒子(SiO2),制备了一种新型的WPCBP-SiO2杂化填料.SEM、TGA和FTIR证明SiO2通过化学键成功负载到了杂化填料的表面.采用含双键的界面改性剂对杂化填料进行改性后,应用于不饱和聚酯树脂基体,探讨了未改性杂化填料及表面改性杂化填料对不饱和聚酯复合材料的力学性能、界面结合作用和热稳定性能的影响.结果表明,新型的杂化填料WPCBP-SiO2能够与不饱和聚酯基体形成强的界面结合作用,显著提高不饱和聚酯复合材料的力学性能和热稳定性能,且表面改性后复合材料的各项性能得到进一步提高.  相似文献   

13.
聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究   总被引:11,自引:0,他引:11  
以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)为原料,通过溶胶-凝胶(Sol-Gel)方法,制备出不同二氧化硅含量的聚乙烯醇/二氧化硅(PVA/SiO2)共混均质膜。通过热重分析(TGA)、示差扫描量热法(DSC)和动态力学分析(DMA)研究了共混膜的热性能。结果表明,与PVA膜相比,PVA/SiO2共混膜具有更高的热稳定性,随SiO2含量的增大,共混膜的分解温度升高,玻璃化温度也略有提高。以水为溶剂,测定了共混膜的耐溶剂性能。与PVA膜相比,PVA/SiO2共混膜的耐溶剂性能有显著的提高。  相似文献   

14.
SiO_2含量对PI/SiO_2杂化薄膜性能的影响   总被引:1,自引:0,他引:1  
聚酰亚胺与SiO2杂化形成的有机-无机杂化薄膜体现出了优异的综合性能,在催化与分离、微电子、光电和绝热材料等领域具有广泛的应用及发展潜力。杂化材料相关的研究也越来越多,就SiO2含量对聚酰亚胺/SiO2杂化薄膜的光、电、热和力学性能的影响进行综述,总结了杂化薄膜的性能随SiO2含量变化而变化的基本规律。  相似文献   

15.
采用熔融共混技术制备了氧化石墨烯(GO)-nano SiO_2杂化材料填充改性的形状记忆热塑性聚氨酯(GO-nano SiO_2/TPU)复合材料,探讨了GO-nano SiO_2杂化材料对复合材料力学性能、熔融指数及形状记忆性能的影响。结果表明:GO-nano SiO_2含量对GO-nano SiO_2/TPU复合材料的力学性能有明显的影响,其含量为0.5wt%~1wt%时,GO-nano SiO_2/TPU复合材料的综合力学性能较好。熔融指数分析表明,填料的加入会降低材料的加工流动性能。形状记忆性能研究表明,加入GO-nano SiO_2杂化材料使得GO-nano SiO_2/TPU复合材料的形状固定率先降低后上升,在含量为1wt%后上升趋势更加明显;而形状回复率随填料含量的增加而呈降低趋势,并且在100℃高温这种变化趋势更加明显和稳定,回复温度越高,形状回复率越好。  相似文献   

16.
采用溶胶凝胶工艺和电纺丝法制备了聚二甲基硅氧烷/二氧化硅(PDMS/SiO2)电纺纤维.纤维连续、直径均匀、表面光滑平整,形成了一块完整的纤维毡。并用场发射扫描电镜(FESEM)、红外光谱法(FT-IR)、热重分析法(TG)研究了纤维的形态、结构和热性能。结果表明,PDMS通过两端羟基与TEOS发生了缩合,电纺纤维具有良好的耐高温性能,并且随着PDMS含量的增加,纤维直径变粗。  相似文献   

17.
新型耐电晕聚酰亚胺杂化薄膜的制备与性能研究   总被引:1,自引:0,他引:1  
通过超声分散和原位聚合法制备了以s-BPDA/1,3,4-APB为树脂基体,以具有不同SiO2添加量的新型球型SiO2/聚酰亚胺杂化薄膜,所制备的杂化薄膜具有优异的力学、热学和耐电晕性能.通过SEM、TEM、FT-IR、UV-vis、DSC、TGA等实验手段对产物进行了分析和表征,并系统研究了SiO2的添加量对杂化薄膜...  相似文献   

18.
经溶胶-凝胶法制得纳米SiO2,用不同结构的双键硅烷偶联剂对其表面进行原位接枝改性,得到两种光敏纳米SiO2(M70SiO2和M50SiO2),并将其添加到紫外光固化丙烯酸酯预聚物中,制得杂化光致抗蚀材料。通过测定光敏参数(D0n.5)考察其光敏性知,杂化光致抗蚀材料光敏性明显增加,当光敏纳米SiO2的质量分数增至13.7%~15.8%时,光敏参数达25 mJ/cm2~27 mJ/cm2;用差示扫描量热仪(DSC)及热机械分析(TMA)考察抗蚀材料的热性能,结果显示,随光敏纳米SiO2用量增加Tg升高,热膨胀系数减小,同时分辨率和精密性并未因光敏纳米SiO2的加入而降低。  相似文献   

19.
PDMS/SiO2杂化材料研究进展   总被引:4,自引:0,他引:4  
综述了近年来PDMS/SiO2杂化材料的研究结果,讨论其杂化机理、结构性能的影响因素及应用前景。  相似文献   

20.
纳米SiO2/纤维素复合材料的非均相制备及其性能   总被引:3,自引:2,他引:1       下载免费PDF全文
采用硅酸四乙酯(TEOS)作为无机前聚物,纤维素为有机组分,利用溶胶-凝胶法在非均相乙醇溶液中制备了纳米SiO2/纤维素复合材料。通过傅里叶红外光谱(FTIR)、透射电镜(TEM)和热重分析(TGA)对复合材料的形貌、结构以及热稳定性进行表征。讨论了SiO2含量对材料力学性能的影响。研究了主要因素碱催化剂氨水对纤维素与SiO2复合效果的影响。结果表明,纳米复合材料的弹性模量、拉伸强度随SiO2含量的增加先增加后减少,质量分数分别为3.1%、10.6%时弹性模量、拉伸强度达到最大。氨水加入量为3.70×10-4 mol/L时,纤维素与SiO2的复合效果最佳。非均相制备的纳米SiO2/纤维素复合材料同样也明显提高了纤维素材料的疏水性、热稳定性和力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号