首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0.4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.  相似文献   

2.
To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.  相似文献   

3.
The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.  相似文献   

4.
The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher Rct and Rp values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.  相似文献   

5.
During the initial stage of aging heat treatment at 850 °C, inclusions such as (Cr, Mn, Al) oxides and (Cr, Mn, Al, Fe) oxides of a hyper duplex stainless steel act as preferential precipitation sites for the chi phase like ferrite/austenite phase boundaries and ferrite/ferrite grain boundaries. The chi phase is precipitated around the inclusions due to the blocking and piling up the alloying elements such as Mo and W around the inclusions. The precipitation of Mo and W enriched chi phase around the inclusions decreases the intergranular corrosion resistance due to the formation of Mo and W depleted zones.  相似文献   

6.
利用光学显微镜、扫描电镜、XRD、拉伸试验机和电化学综合测试仪等研究了不同固溶温度对2507超级双相不锈钢组织、力学性能和耐蚀性的影响。采用Thermo-Calc热力学软件计算了2507双相不锈钢的热力学平衡相图,并与测试结果进行了对比。研究结果表明,经1050 ℃及以上温度固溶后,σ相溶解;随着固溶温度的升高,铁素体相含量增加,奥氏体相含量降低,α/γ相体积分数比增加;1050~1100 ℃固溶30 min并水冷时,双相不锈钢具有较好的综合力学性能,屈服强度、抗拉强度和伸长率分别大于600 MPa、840 MPa和35%。1050 ℃固溶30 min时,双相钢可获得较好的耐蚀性能。  相似文献   

7.
A new high Mn-Ni free (duplex stainless steel) DSS containing 18Cr-6Mn-1Mo-0.2N has been developed by examining the effects of manganese on the corrosion and mechanical properties of high Mn SSs containing 18Cr-4 ∼ 11Mn-0 ∼ 2Ni-0 ∼ 1Mo-0.2N. The alloy with 45% ferrite is found to be an optimum alloy with much higher mechanical strength and similar corrosion resistance compared with those of standard SS304. In addition, the alloy was free of precipitation of sigma phase and Cr-nitride when exposed to high temperatures due primarily to relatively low contents of Cr, N and Mo. With an increase in Mn content, the resistance to pitting and metastable pitting corrosion of high Mn DSS decreased since the number of (Mn, Cr) oxides, acting as preferential sites of pitting, increased with the Mn content.  相似文献   

8.
利用扫描电镜、透射电镜、X射线衍射仪、电化学工作站等试验及手段,研究了2507(S32750)超级双相不锈钢经700~1000 ℃时效不同时间后σ相的析出规律及其对冲击性能和腐蚀性能的影响规律。结果表明:σ相析出速度很快,析出量随时效时间的延长先增加后逐步减少,在850~900 ℃时效后σ相的析出量最大。σ相的析出严重降低材料的冲击及腐蚀性能,建议时效温度不低于950 ℃。  相似文献   

9.
Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.  相似文献   

10.
Duplex stainless steel has higher corrosion resistance and better mechanical properties than conventional type 300 series stainless steel. The corrosion behavior of duplex stainless steel is strongly dependent on the ratio, shape, size and distribution of austenite and ferrite phase in the microstructure. The relationship between the microstructure and the corrosion behavior of the duplex stainless steel was studied. For this purpose, the duplex stainless steel samples were solution heal treated at 1150°C followed by either cooling at various rates (water quenching, air coooling, furnace colling with door opened and door closed) to 820°C and then water quenching to room temperature, or quenching to room temperature and annealing heat treatment at 840°C for various lengths of time. A double loop electrochemical polentiodynamic reactivation (EPR) test was carried out to examine the effect of various cooling procedures or annealing treatment on the sensitization of duplex stainless steel. The grain size, shape, and distribution of the two phases were examined under microscope. From the test results, the relationships were discussed among heat treatment, electrochemical properties and microstructure.  相似文献   

11.
双相不锈钢兼具优异的力学性能、耐腐蚀性以及抗辐照能力,是核电站一回路主管道的关键结构材料。然而,在服役环境下长期工作,双相不锈钢中铁素体会发生调幅分解,生成富Fe的α相和富Cr的α′相,即产生热老化脆化现象,从而恶化合金的力学性能。本文综述了双相不锈钢的热老化机制,探索不同因素对合金相分解的影响,进而分析其微观组织及动力学演化规律。此外,利用计算机模拟平台对合金的相分解过程进行预测,可以缩短材料的研发周期和降低成本,对迫切解决双相不锈钢的热老化问题具有重要帮助。  相似文献   

12.
研究了酸洗和固溶处理对8种不锈钢筋电阻对焊接头抗点蚀能力的影响。研究发现,酸洗和因咱都有效地改善和恢复不锈钢电阻对焊接头的抗点蚀性能。对于普通双相钢,固溶处理比酸洗能更有产地改善接头的抗点蚀性能,并无晶粒粗化。对于奥氏体钢和超纸奥氏体风,固溶处理的效果不及酰洗,且会引起母材晶粒粗化。对含Mo含N较高钢种的对焊接头,两者的更佳,尤其是两者综合处理后的接头,其临界点蚀温度CPT其至高于对应母材经酸洗以  相似文献   

13.
酸洗和固溶处理对不锈钢抗点蚀性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
胡礼木 《焊接学报》2000,21(1):83-93
研究了酸洗和固溶处理对 8种不锈钢钢筋电阻对焊接头抗点蚀能力的影响。研究发现 ,酸洗和固溶处理都能有效地改善和恢复不锈钢电阻对焊接头的抗点蚀性能。对于普通双相钢 ,固溶处理比酸洗能更有效地改善接头的抗点蚀性能 ,并无晶粒粗化现象 ;对于奥氏体钢和超级奥氏体钢 ,固溶处理的效果不及酸洗 ,且会引起母材晶粒粗化。对含Mo含N较高钢种的对焊接头 ,两者的效果更佳 ,尤其是两者综合处理后的接头 ,其临界点蚀温度CPT甚至高于对应母材经酸洗以后的CPT。文章对比分析了母材和固溶处理前后接头的显微组织 ,讨论了引起上述抗点蚀性能变化的原因。文章还探讨了酸洗和Mo、N元素可以改善不锈钢抗点蚀性能的机理。  相似文献   

14.
热处理对双相不锈钢组织和腐蚀性能的影响   总被引:2,自引:0,他引:2  
    研究了热处理温度和时效时间对双相不锈钢微观组织及腐蚀性能的影响,结果表明:随着固溶温度提高,双相钢中奥氏体含量增加.固溶温度为1060℃,铁素体含量大约在45%~50%之间,两相比例大约为1∶1,抗点蚀性最好.时效处理时间越长,双相不锈钢中σ相析出越多,其耐腐蚀性能越差.析出的σ相周围形成的贫铬区优先被腐蚀,降低了双相不锈钢抗点蚀性能.  相似文献   

15.
柳祖恩 《上海金属》1998,20(1):16-19
介绍超低碳双相耐蚀不锈钢管为应用于高压空气管道所进行的适用性分析及验证试验,其成功的结果说明,一种工程材料要应用各种领域,除其通用的力学性能指标外,还应有针对性地进行适用性分析与试验。  相似文献   

16.
The chemistry and mechanical properties of nitrided iron alloys are well understood but their resistance to oxidation and corrosion has received less attention. Thermogravimetric and metallographic results are presented of the oxidation in air of nitrided iron, FeMo and FeCr laboratory alloys, and mild steel. Oxidation resistance is improved after nitriding by formation of a fine grain oxide which has a higher fracture strain than the coarser oxide on the corresponding annealed alloys. No void formation occurs at the oxide/metal interface. The results are discussed in terms of nucleation of oxide on dispersed incoherent nitride particles in the metal surface. The improved cohesion of the oxide on nitrided alloys is however not reflected in the results of thermogravimetric studies as the reduced interfacial voidage on the dispersoid-containing alloy allows unrestricted cation transfer from metal to oxide and the conditions are insufficiently aggressive to cause spalling on un-nitrided alloys. Experiments on nitrided mild steel demonstrate the resistance to fracture of oxides formed on nitrided alloys. The criteria for resistance to aqueous corrosion are different from those for resistance to high temperature oxidation but nitriding is shown to produce significant improvements in resistance to general and pitting attack. Potentiokinetic measurements are reported for nitrided laboratory alloys and a commercial austenitic stainless steel containing nitrogen in solid solution. This behaviour is not fully understood but is not simply related to oxide nucleation and cohesion as is the case in high-temperature oxidation.  相似文献   

17.
The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 °C) by electrochemical methods.Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature.Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 °C.  相似文献   

18.
The resistance of austenitic stainless steel to intergranular corrosion (IGC) varies during the process of aging at temperatures between 500 and 700°C. This follows the well-known phenomena of precipitating of M23C6 chromium carbides and intermetallic phases (η, σ, χ). Consequently, this leads to significant Cr-depletion zones at grain boundaries responsible for material sensitization to IGC. The assessment of the sensitivity to IGC from the Strauss or equivalent tests requires cutting a sample off the material, which can be harmful to the integrity of the structure in service. Such a sampling is in essence only qualitative and insufficiently sensitive to the low widths of Cr-depletion at the beginning of precipitation. The DL-EPR method (Double-Loop Electrochemical Potentiodynamic Reactivation test) is known to be a non-destructive and quantitative test method of detecting relatively mild degrees of sensitization in austenitic stainless steel. The current ratios Ir/Ia > 1% (sensitization criteria) and, as a consequence, the electric charge ratios Qr/Qa > 1% of the degree of sensitization (DOS) to intergranular corrosion can be considered as good parameter values to differentiate materials with only difference in the DOS and to detect the fine precipitation responsible for the depletion in the elements of an alloy. This criteria is also valid for the detection of desensitization during againg for longer periods of time. The text was submitted by the authors in English.  相似文献   

19.
Ce addition to a hyperduplex stainless steel increased its resistance to pitting corrosion because of the formation of stable Ce oxides and a decrease in the area of microcrevices between the matrix and inclusions that act as pit initiation sites. In addition, Cr-enriched zones were formed around Ce oxides with low Cr content in the Ce added alloy. Pitting corrosion in the base alloy initiated at the microcrevice and propagated to Cr oxides, which deteriorated the pitting corrosion resistance. However, pitting corrosion in the Ce added alloy propagated not to the stable Ce oxides but to the matrix.  相似文献   

20.
Laboratory weight loss and cyclic potentiodynamic polarization corrosion tests were performed on two types of corrosion resistant alloys, a duplex alloy (ferritic-austenitic stainless steel) and two austenitic stainless steels, in mixtures of chloride (3000, 9000 and 15000 ppm) and fluoride (4800 and 15000 ppm) ions at pH 3. Two temperatures were tested, 60 and 70°C. The electrochemical results indicate that the duplex stainless steel presents high corrosion resistance. Weight loss results show low corrosion rates of the two types of stainless steels after 60 days exposure. Sonic pits-crevices were found under the corrosion crust deposits on the duplex stainless steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号