首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
给出了带两个形状参数λ1,λ2的类四次三角多项式Bézier曲线.该曲线不仅具有与四次Bézier曲线类似的性质,而且无需有理形式即可精确表示圆、椭圆、抛物线等二次曲线弧以及高精度近似表示圆柱螺线等超越曲线.利用两个参数的不同取值能够局部或整体调控曲线的形状,并且可以从两侧逼近控制多边形.讨论了两段曲线G2和C4连续的...  相似文献   

2.
带双参数的Bézier型三角多项式曲线   总被引:1,自引:0,他引:1  
给出了带有双参数的三角多项式曲线,称为λT-Bézier曲线.其不但具有Bézier曲线类似的性质,还可以表示二次曲线、超越曲线.对参数的不同设置使得曲线具有较强的可调性--λ1 λ2越大曲线越靠近控制多边形.在拼接时可达G3连续.实例给出了该类曲线的有效性.  相似文献   

3.
带形状参数的Bézier曲线   总被引:27,自引:0,他引:27       下载免费PDF全文
给出了含有参数λ的(n+1)次多项式基函数,其是n次Bernste in基函数的扩展;分析了这组基的性质,基于该组基定义了带有形状参数的(n+1)次多项式曲线。曲线不仅具有n次Bézier曲线的特性:如端点插值、端边相切、凸包性、变差缩减性、保凸性等,而且具有形状的可调性:在控制顶点不变的情况下,随着参数不同,可产生不同逼近控制多边形的曲线。当λ=0时,曲线可退化为n次Bézier曲线。运用张量积方法,可生成形状可调的曲面,曲面具有曲线类似的性质。应用实例表明,本文定义的曲线应用于曲线/曲面的设计十分有效。  相似文献   

4.
给出了一类双参数的类四次三角Bézier曲线及其扩展曲线的定义,得到了该类曲线及其扩展曲线的性质,给出了两段双参数的类四次三角Bézier曲线[G1(C1),G2(C2)]及两段扩展曲线[G1(C1),G2(C2)]光滑拼接的充要条件,并讨论了这两类曲线的应用。算例表明,该类曲线及其扩展曲线在曲线造型,特别是在非对称图形的造型中,具有很强的描述能力。  相似文献   

5.
给出了一组带三个形状参数的类四次Bernstein基函数,它是四次Bernstein基函数的扩展,讨论它的基本性质,基于这组基定义了带三个形状参数的类四次Bézier曲线,该曲线和四次Bézier曲线有类似的性质,并具体分析了形状参数的几何意义和曲线间的光滑拼接。实例表明,该方法在设计曲线曲面时十分有效。  相似文献   

6.
在几何造型的许多应用中,良好的曲线形状应该消除不必要的奇点和拐点,因此 往往需要预知与分析参数曲线的各种形状特征,以避免出现奇异形状的设计风险。为了快速确 定参数曲线的形状特征,利用锥面的齐次性简化了参数曲线的形状条件,得出了一类带 2 个形 状参数的二次三角 Bézier 曲线的尖点条件锥和 2 张重结点边界条件锥;3 张特征锥面及其切平 面将特征空间划分为不同的特征区域。曲线的形状特征完全由特征点在特征空间的分布区域决 定。用垂直于坐标轴的平面切割特征空间,可得到基于包络与拓扑映射方法的所有形状条件分 布图。进而讨论了形状参数变化对各特征区域的影响,相关结果可使设计者明确如何配置控制 顶点或者调节形状参数,使得生成曲线为全局凸或局部凸曲线,或具有所需要的奇点与拐点, 或将当前曲线形状调节为另一种所需的形状。  相似文献   

7.
提出一组带两个形状参数λ,μ的四次多项式基函数,它是带一个形状参数的三次Bernstein基函数的扩展.基于该组基定义了一类带两个形状参数λ,μ的三次Bézier曲线,它不仅具有带一个形状参数的三次Bézier曲线的绝大多数性质,而且利用λ,μ的不同取值能够局部或整体调控曲线的形状,并且可以从两侧逼近控制多边形.讨论了两段曲线C2拼接条件.最后,还给出了一些可调控曲面的实例.  相似文献   

8.
带多个形状参数的Bézier曲线与曲面的扩展   总被引:6,自引:0,他引:6  
通过引入多个形状参数,生成Bézier曲线与三角域Bézier曲面的扩展,它们包含普通的Bézier曲线曲面为其特例.这类多项式曲线与曲面的调配函数具有显式表示,易于求导和求积.改变形状参数的值能整体或局部调控曲线与曲面的形状.  相似文献   

9.
为了能提升三次三角域Bézier曲面的形状控制能力,从局部形状参数和全局形状参数的角度出发,构造了带有2种参数的三次三角域Bernstein基函数。借由基函数定义了三次三角域λα-Bézier曲面,通过改变2种参数的取值达到不同的控制效果。将三角域λα-Bézier曲面与Bézier曲面进行了形状调节、时间复杂度和控制网格逼近程度3方面的比较,得出了三角域λα-Bézier曲面的优势。并给出了三次三角域λα-Bézier曲面片间满足C1、G1连续的条件及证明,相关实例也证实:三次三角域λα-Bézier曲面不仅继承了三次三角域Bézier曲面的优良性质,还可以通过变化参数取值来提高曲面的形状控制能力。在曲面拼接时,也可以通过改变参数来构造多种拼接造型。  相似文献   

10.
《图学学报》2010,31(6)
通过一类代数三角混合Bézier型基函数的定义,构造了一类C2连续的代数三角混合Bézier型插值曲线。该曲线继承了Bézier曲线的一些优良特性,并能充分克服Bézier型基函数不能精确表示二次曲线曲面以及某些超越曲线曲面的弱点。另外,利用形状控制参数可以灵活调节曲线形状,进一步增强了曲线曲面的表现能力。最后实例表明了新的插值曲线应用于几何造型的有效性。  相似文献   

11.
首次提出四次Bernstein基函数的一种新扩展——含有一个形状参数的λQ—Bernstein基函数,与以往的基函数相比较,基函数的次数一次性升高两次,且具有四次多项式基函数和带一个形状参数的五次多项式基函数的所有性质,基于该基函数定义λQ—Bézier曲线,并且曲线自身含有形状参数,增加曲线形状的可调性。与含一个参数的五次多项式曲线进行比较,该曲线能更好地逼近所给定的控制多边形。  相似文献   

12.
13.
针对自由曲线曲面设计中的形状控制问题,以[1,sint,cost,sin2t]为基构造了一种带形状控制参数λ的二次TC-Bézier曲线,在0≤λ≤2范围内,可以通过调整λ的值来调整曲线的形状,并可以精确表示圆弧、椭圆弧等.给出了二次TC-Bézier曲线间的G1拼接条件及在曲面造型中的应用实例.试验表明:在形状参数范围内,二次TC-Bézier曲线位于二次Bézier曲线两侧,可以利用形状参数来调整曲线的形状,具有更大的灵活性.  相似文献   

14.
相较于经典的Bézier曲线,带形状参数的Bézier曲线提供了独立于控制顶点的形状调整自由度,但同时又增加了设计人员选择形状参数的工作量。鉴于此,主要讨论形状参数的选取方案。首先证明了已有文献中给出的Bernstein基函数的含参数扩展基为全正基,从而保证了相应的带形状参数的Bézier曲线的理论价值;然后采用能量最小化方法来确定曲线中形状参数的取值,推导了曲线的拉伸能量、弯曲能量、扭曲能量近似最小时,形状参数的计算公式,为曲线的应用提供了方便。  相似文献   

15.
利用含有三角函数的T-Bézier曲线,结合加权的思想对Bézier曲线进行了扩展,给出了扩展曲线的基函数表达式,研究了曲线的性质、拼接及应用,通过调节形状参数的值可以精确表示或者逼近圆、椭圆等二次曲线,给出了精确表示和逼近圆的实例,该曲线在结合圆锥曲线的自由曲线设计中具有较高的应用价值。  相似文献   

16.
给出了带有4个形状参数的5次多项式基函数,分析了这组基函数的性质,并由此基函数构造了带4个形状控制参数的四次扩展Bézier曲线(简称QE-Bézier曲线)。QE-Bézier曲线是对四次Bézier曲线的扩展,它不仅具有与四次Bézier曲线类似的性质,而且具有灵活的形状可调性和更好的逼近性。进一步研究了两相邻QE-Bézier曲线的合并问题,通过曲线拟合方法与广义逆矩阵理论相结合,直接得到了合并曲线控制顶点的显示表达式,并给出了误差分析,数值实例显示逼近效果较好。  相似文献   

17.
一类形状可调的拟Bézier曲线   总被引:2,自引:1,他引:1       下载免费PDF全文
给出一种带多形状参数的多项式调配函数,Bernstein基函数是它的一个特例.利用给出的调配函数,定义了一类形状可调的拟Bézier曲线.调配函数和拟Bézier曲线具有与Berustein基函数及Bézier曲线类似的性质.对给定的控制多边形,可以通过改变形状参数的值来调整曲线的形状.运用本文方法可生成带参数的拟Bézier曲面.实例表明,本文方法控制灵活,方便有效.  相似文献   

18.
四次带参Bézier曲线的形状分析   总被引:2,自引:0,他引:2  
为了明确形状参数对四次带参Bézier曲线形状的影响,利用基于包络理论与拓扑映射的方法对其进行了形状分析,得出了曲线上含有奇点、拐点和曲线为局部凸或全局凸的充分必要条件,这些条件完全由控制多边形边向量的相对位置所表示;并进一步讨论了形状参数对形状分布图的影响及其对曲线形状的调节能力.  相似文献   

19.
20.
带多形状参数的广义Bézier曲线曲面   总被引:3,自引:0,他引:3  
为了在几何造型中更加灵活地调控曲线曲面的形状,提出一种带多形状参数的造型方法.首先构造一种带多形状参数的多项式调配函数,其中Bernstein基函数是它的特例;然后利用给出的调配函数定义一类形状可调的广义Bézier曲线曲面,并研究了它们的性质.对给定的控制多边形,可以通过改变形状参数的值整体或局部地调控曲线的形状.最后通过数值实例说明了文中方法的实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号