首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trilayer pellicle that consists of a high-index center layer that is symmetrically coated on both sides by a low-index film can be designed to produce differential reflection and transmission phase shifts of +/- 90 degrees at oblique incidence and equal throughput for the p and the s polarizations. Such a device splits a beam of incident linearly polarized light into two orthogonal circularly polarized components that travel in well-separated angular directions. Examples of infrared dual quarter-wave retarders that use a symmetrically coated Ge pellicle at 77 degrees angle of incidence are presented. A 50-50% splitter requires a symmetric pellicle with at least five layers. Error analysis shows that the thicknesses of the high-index layers must be tightly controlled. These circular polarization beam splitters are intended for operation with a well-collimated light source and can be used as the basis of a novel circular polarization Michelson interferometer.  相似文献   

2.
Achromatic quarter-wave plates using the dispersion of form birefringence   总被引:2,自引:0,他引:2  
Kikuta H  Ohira Y  Iwata K 《Applied optics》1997,36(7):1566-1572
We propose achromatic quarter-wave plates of a subwavelength grating structure. When the period of the grating structure is smaller than the wavelengths of the incident light, the structure is considered to be an optically anisotropic medium. The effective refractive indices strongly depend on the wavelengths, especially when the period is close to the wavelength. Using this feature, we can design a grating quarter-wave plate whose phase retardation is maintained at pi/2 for a wide wavelength range. A design method using the effective medium theory is described, and the wave plates designed were evaluated by numerical calculation with a rigorous electromagnetic grating theory. The calculation results led to the possibility of an achromatic quarter-wave plate whose retardation errors are smaller than 3 degrees for a +/-10% change in wavelength.  相似文献   

3.
Kim J  Yoon H  Park N  Lee B 《Applied optics》2001,40(25):4473-4475
We propose a Michelson-interferometer-type polarization-mode-dispersion (PMD) compensator with one polarization beam splitter and quarter-wave plates. We experimentally demonstrate the proposed PMD compensator with fiber devices and show the PMD compensation ability to be 104 ps by the fixed-analyzer method.  相似文献   

4.
A silicalite/mordenite bilayered self-supporting membrane with disc-shape was synthesized from a layered silicate, kanemite by two steps using solid-state transformation. The mechanical strength (compression strength) of the membrane was greater than 10 kg/cm2. Both sides of the membrane were much different in the morphology and SiO2/Al2O3 ratio. One side (silicalite side) consisted of the intergrowth of prism-like crystals (ca. 1-2 μm), while the other side (mordenite side) was composed of scale-like crystals (ca. > 1 μm). The SiO2/Al2O3 ratios for the respective sides were less than 600 and 15. The XRD patterns were consistent with those of the silicalite and mordenite structures.  相似文献   

5.
We measure the gradient diffusion coefficient of a model lipopolymer in supported lipid bilayer membranes from Fourier-transform post-electrophoresis relaxation. The experiments and accompanying quantitative interpretation furnish the concentration dependence of the gradient diffusion coefficient. In striking contrast to the recent measurements of the self-diffusion coefficient from fluorescence recovery after photobleaching, the lipopolymer gradient diffusion coefficient increases with concentration. We interpret the enhancement at small but finite concentrations using the Scalettar–Abney–Owicki (SAO) statistical mechanical theory (1988) and the Bussell–Koch–Hammer (BKH) hydrodynamic theory (1995), which are customarily adopted to model membrane protein dynamics. The SAO theory furnishes an effective disc radius and soft repulsive interaction radius that are comparable to the Flory radius of the unperturbed polyethylene glycol chains. On the other hand, the BKH theory predicts a gradient diffusion coefficient that decreases with disc/membrane protein concentration. Thus, in contrast to membrane proteins, we conclude that lipopolymer hydrodynamic interactions are weak because the principal disturbances are in the low-viscosity aqueous phase. Accordingly, lipopolymer interactions are dominated by thermodynamic interactions among polymer chains. Interestingly, our experiments suggest that increasing (decreasing) the polymer molecular weight should increase (decrease) the relaxation rate of lipopolymer concentration fluctuations.  相似文献   

6.
Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 x 50 nm(2) planar membrane patches over 2 mus. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.  相似文献   

7.
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.  相似文献   

8.
A bilayer-forming synthetic lipid containing a chiral centre and a chromophoric group was investigated as a spectroscopic transducer, based on its enhanced circular dichroism (CD). The CD intensity of chiral bilayers was reduced with addition of alcohol. For ten additives tested, a linear correlation was observed between the CD spectral response to the alcohols and their partition coefficient (logP) in octanol/water system. By use of an immobilization technique, the bilayer film was obtained on a quartz plate, and a possible application as a solid-phase assay of methanol was demonstrated.  相似文献   

9.
A method is presented for solution of the problem of a single pulsed deformation of structural elements based on approximation of the pulse functions by harmonic series. Expressions were obtained from which an approximate calculation was made of the dynamic deflection of an elastic circular plate in loading with a local circular pulsed load and of a circular membrane under the action of a uniformly distributed pressure pulse.Translated from Problemy Prochnosti, No. 8, pp. 6–9, August, 1992.  相似文献   

10.
This study focuses on quantifying the change in phase speed of waves transmitting through periodically undulated plates under pass band interaction. A perturbation technique is used to analyze the transmission of horizontally polarized guided waves in elastic plates with sinusoidal periodicity at their outerfaces. Phase speed of transmitting modes is presented as a function of various parameters, including outerface wavenumber, undulation amplitude, degree of undulations symmetry about the periodically undulated plate midplane, plate average thickness, and frequency of propagation.  相似文献   

11.
This work describes an electrochemical technique that is suitable for rapid and sensitive screening of the triazine herbicides simazine, atrazine, and propazine. Egg phosphatidylcholine and dipalmitoylphosphatidic acid (DPPA) were used for the formation of self-assembled bilayer lipid membranes supported on silver wire (s-BLMs). Evidence that BLMs could form on silver wires was collected by means of ellipsometry which was done to investigate samples consisting of lipids deposited on planar reflective silver films. The interactions of triazines with s-BLMs produced electrochemical ion current increases which reproducibly appeared within ~10 s after exposure of the lipid membranes to the herbicides. The sensitivity of the response was maximized by use of BLMs composed of 35% (w/w) DPPA and by alteration of the phase distribution within membranes by the introduction of 1.0 mM calcium ions in bulk solution. The mechanism of signal generation could be a result of rapid adsorption of the triazine on the surface of s-BLMs with a consequent rapid reorganization of the electrostatics of the membrane. The magnitude of the current signal was linearly related to the herbicide concentration, which could be determined at the nanomolar level. The present triazine minisensor exhibited good mechanical stability and longevity (routinely over 48 h), reproducible response characteristics (i.e., sensitivity and response to a given concentration of triazine in solution), fast response times, and low detection limits. The sensor can be simply and reliably fabricated at low cost. Studies have shown high selectivity for triazines in the presence of insecticides and pesticides.  相似文献   

12.
This article presents the results of a series of experiments performed to assess the dynamic response of circular monolithic steel and steel–polyurea bilayer plates to impulsive loads. A convenient technique to enhance the energy absorption capability of steel plates and to improve their resistance to fracturing in dynamic events, is to spray-cast a layer of polyurea onto the plates. Since polyurea readily adheres to metallic surfaces and has a short curing time, the technique may be used to retrofit existing metallic structures to improve their blast resistance. We have examined the effectiveness of this approach, focusing on the question of the significance of the relative position of the polyurea layer with respect to the loading direction; i.e., we have explored whether the polyurea layer cast on the front face (the impulse-receiving face) or on the back face of the steel plate would provide a more effective blast mitigating composite.The experimental results suggest that the polyurea layer can have a significant effect on the response of the steel plate to dynamic impulsive loads, both in terms of failure mitigation and energy absorption, if it is deposited on the back face of the plate. And, remarkably, when polyurea is placed on the front face of the plate, it may actually enhance the destructive effect of the blast, promoting (rather than mitigating) the failure of the steel plate, depending on the interface bonding strength between the polyurea and steel layers. These experimental results are supported by our computational simulations of the entire experiment, employing realistic physics-based constitutive models for the steel (DH-36, in the present work) and polyurea [Amini MR, Amirkhizi AV, Nemat-Nasser S. Numerical modeling of response of monolithic and bilayer plates to impulsive loads. Int J Impact Eng, submitted for publication].  相似文献   

13.
In this paper, we present and discuss the results of our numerical simulation of the dynamic response and failure modes of circular DH-36 steel plates and DH-36 steel–polyurea bilayers, subjected to impulsive loads in reverse ballistic experiments. In our previous article, we reported the procedure and results of these experiments [MR Amini, JB Isaacs, S Nemat-Nasser. Experimental investigation of response of monolithic and bilayer plates to impulsive loads. accepted]. For the numerical simulations, we have used physics-based and experimentally-supported temperature- and rate-sensitive constitutive models for steel and polyurea, including in the latter case the pressure effects. Comparing the simulation and the experimental results, we focus on identifying the potential underpinning mechanisms that control the deformation and failure modes of both monolithic steel and steel–polyurea bilayer plates.The numerical simulations reveal that the bilayer plate has a superior performance over the monolithic plate if the polyurea layer is cast on its back face (opposite to the blast-receiving side). The presence of the polyurea layer onto the front face (blast-receiving side) amplifies the initial shock loading and thereby enhances the destructive effect of the blast, promoting (rather than mitigating) the failure of the steel plate. In addition, the interface bonding strength between polyurea and steel is examined numerically and it is observed that the interface bonding strength has a significant effect on the performance of the steel–polyurea bilayer plates. The numerical simulations support the experimentally observed facts provided the entire experiment is simulated, employing realistic physics-based constitutive models for all constituents.  相似文献   

14.
15.
Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l−1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (RMO = 5/5) < DOPC/MO (RMO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes.  相似文献   

16.
Abstract

Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l?1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (RMO = 5/5) < DOPC/MO (RMO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes.  相似文献   

17.
A new quadrilateral 4‐node element for shear deformable plates is developed based on the hybrid stress formulation. The element is designed to be simple, stable, free of locking and to pass all the patch tests. To this purpose, special attention is devoted to select displacement and stress approximations. The standard displacement interpolation is enhanced by linking the transverse displacement to the nodal rotations and an appropriate stress approximation is rationally derived. In particular, the assumed stress approximation is equilibrated within each element, co‐ordinate invariant and ruled by the minimum number of parameters. Excellent element performance is demonstrated by a wide experimental evaluation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
An eight-noded, shear flexible quadratic rectangular element with five degrees of freedom per node is developed in this paper, to study the effects of transverse shear on the stability of layered composite plates, under uni-axial and bi-axial compression for various boundary conditions. Green's nonlinear strain tensor is used to formulate the initial stress matrix (Kσ). The validity of the element is demonstrated by comparing the results from the present formulation with those existing in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号