首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对不同编织角、 不同纤维体积分数的三维五向炭纤维/酚醛编织复合材料在不同温度下进行了纵向(编织方向)压缩和横向压缩试验 , 获得了其主要压缩力学性能 , 分析了编织参数、 温度对材料压缩力学性能的影响。对试件断口进行了宏观及扫描电镜观察 , 从宏、 细观角度研究了材料的变形及其破坏机制。结果表明 , 三维五向炭纤维/酚醛编织复合材料的压缩应力2应变曲线呈现明显的非线性特征 , 且温度效应明显; 编织角和纤维体积分数是影响材料压缩性能的主要参数。三维五向炭纤维/酚醛编织复合材料的纵向压缩与横向压缩具有完全不同的破坏机制。   相似文献   

2.
以X-Y平面依次铺设炭纤维束、Z向穿插炭棒的4D软硬混编为预制体,采用沥青液相常压、高压浸渍/炭化-石墨化循环致密工艺制备4D-C/C复合材料。通过该材料Z向(炭棒方向)的拉伸实验,测定其拉伸性能和力学行为,并采用SEM分析试样表面及断口形貌。结果表明:宏观上拉伸试样以炭棒整体拔出的形式破坏;细观尺度上,试样表面形成了与载荷方向垂直的贯穿性裂纹,裂纹以2 mm左右的距离呈等间距分布;材料进一步的破坏过程中,基体裂纹在X-Y向纤维束中呈线性扩展,快速分割了基体材料,使4D-C/C复合材料的拉伸破坏演变为1D-C/C复合材料的破坏模式,由于炭棒与基体炭界面结合弱,炭棒以拔出方式失效和破坏。  相似文献   

3.
采用分子动力学模拟(MD)分析炭纤维/氨基化多壁碳纳米管/环氧树脂复合材料的力学性能。采用碳纳米管作为环氧树脂的主要增强材料以期提高三相复合材料的力学性能。建立固化的环氧树脂模型以提高碳纳米管和基体间的粘结强度。炭纤维体积分数设定为60%,碳纳米管体积分数为0.25%-5%。结果表明,碳纳米管体积分数从0.25%增加至5%时,沿炭纤维方向上的杨氏模量由92GPa提高至224.4GPa,抗张强度由1.35GPa提高至2.85GPa。  相似文献   

4.
纤维含量和热处理对炭/炭复合材料性能的影响   总被引:3,自引:1,他引:2  
研究了炭纤维体积分数和预制体热处理温度对炭/炭复合材料力学性能的影响.结果表明,随着预制体中炭纤维体积分数的增加炭/炭复合材料的硬度逐渐增加,但当炭纤维的体积分数大于30%时,炭/炭复合材料硬度增加的幅度减小.炭纤维体积分数的增加对炭/炭复合材料硬度的影响有两个相反的作用,纤维的增强作用将使硬度增大,而孔隙率的增加将导致硬度的减小.炭/炭复合材料的抗弯强度随着纤维体积分数的增加而增加,但因纤维体积分数的增加会导致孔隙减小.致使热解炭不能充分地渗透填充到纤维间的孔隙内,抗弯强度下降,所以随着纤维体积分数的增加,材料的弯曲强度会出现拐点.随着预制体热处理温度的不同,炭/炭复合材料有脆性断裂、整束纤维拔出的假塑性断裂和部分炭纤维拔出的假塑性断裂三种断裂机制.  相似文献   

5.
为了改善纤维增强树脂基复合材料厚度方向(Z向)热导率和纵向(X向)压缩强度,通过向氰酸酯树脂中加入不同质量分数的鳞片石墨填料进行树脂基体改性,并与中国TG800炭纤维复合制备成炭纤维复合材料。研究了鳞片石墨/氰酸酯复合物固化前的流变性能,固化后的导热率、力学性能,以及炭纤维/鳞片石墨/氰酸酯复合材料的热导率和力学性能。结果表明,未固化鳞片石墨/氰酸酯复合材料的流变复数黏度随着鳞片石墨添加量呈指数型增加,随着形变量的变化表现出佩恩(Payne)效应,体现了鳞片石墨在树脂基体中的联通网络的形成和破坏过程;固化后复合材料的热导率随着鳞片石墨添加量的增加呈线性增加。当鳞片石墨添加量为10 wt%时,鳞片石墨/氰酸酯拉伸模量从2.9 GPa提高到4.3 GPa,提高了48%,热导率提高了100%,炭纤维/鳞片石墨/氰酸酯复合材料的Z向导热率提高了127%,复合材料纵向压缩强度提高了31%。  相似文献   

6.
分别以氧化石墨粉(GO)、还原氧化石墨烯乙醇悬浮液(RGO)和热法还原石墨烯粉(TRG)为填料,分散于酚醛树脂(PR)的乙醇溶液中,再将这些基体混合物涂覆于炭纤维(CF)布上,经热压成型工艺制备氧化石墨烯/酚醛树脂/炭纤维、还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维、热法还原氧化石墨烯/酚醛树脂/炭纤维层次复合材料。研究了GO、RGO和TRG对复合材料结构、压缩性能、弯曲性能及磨擦性能的影响。结果表明,与纯酚醛树脂/炭纤维复合材料相比,当纳米填料的质量分数仅为0.1%时,层次复合材料的压缩性能可显著提高,其中,热法还原氧化石墨烯/酚醛树脂/炭纤维的压缩强度和模量分别提高了178.9%,129.5%;弯曲性能也可得到一定的改善。还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维层次复合材料的最大储能模量可提高75.2%。所有改性石墨烯/酚醛树脂/炭纤维层次复合材料的Tg均有所降低。  相似文献   

7.
采用热压与致密化工艺分别在1 000、1 100、1 200和1 300℃下制备出纳米粘土增强一维炭/炭复合材料(C/C)。利用XRD、激光拉曼光谱等研究纳米粘土的热转变规律,利用体密度、导热率、抗弯强度及模量等数据研究纳米粘土的热转变对C/C复合材料的影响。采用场发射扫描电镜分析试样微观形貌。结果表明,热压温度对纳米粘土增强C/C复合材料的结构和性能影响显著。1 200℃热压制备的C/C复合材料抗弯强度最大为230.1 MPa,模量最大为87.3 GPa。C/C复合材料中的纳米粘土1 200℃热压转变成莫来石、方石英、无序粘土、有序炭及无序炭。这些组分均匀分散在基体中,可改善基体炭结构以及基体炭和炭纤维的界面,提高复合材料的力学性能;1 300℃热压时纳米粘土中的Si O2与基体炭发生碳热还原反应,破坏了基体结构,导致材料的抗弯强度和模量降低,而反应产物Si C提高了材料的导热率。  相似文献   

8.
采用CVI涂层和400℃空气氧化技术对炭纤维进行表面处理,借助偏光显微镜(PLM)、扫描电镜(SEM)和弯曲性能测试研究了炭纤维表面处理对2D中间相沥青基炭/炭复合材料的组织结构与弯曲性能的影响.结果表明:两种表面处理的材料均具有韧性断裂特征,CVI涂层表面处理后材料的"假塑性效应"更为显著,但是其抗弯强度较低,基体炭的组织结构为具有光学活性的热解炭和中间相沥青炭的流线型、广域流线型组织,材料内部形成多层次的界面结构,在断裂破坏过程中,主要发生基体内聚破坏;400℃空气氧化表面处理的材料的基体炭的组织结构为中间相沥青炭的小域、广域流线型组织,材料在断裂破坏过程中,表现为混合破坏,即基体内聚破坏和界面粘结破坏同时发生.  相似文献   

9.
以大直径(40~50μm)中间相沥青基炭纤维为导热相,以掺杂一定量不同粒径天然鳞片石墨的中间相沥青为黏结剂,经500℃热压成型、高温炭化及石墨化处理制备出单向高导热炭/炭(C/C)复合材料。采用偏光显微镜和扫描电子显微镜对复合材料石墨化样品的形貌和微观结构进行表征,并探讨鳞片石墨掺杂对复合材料不同方向导热性能的影响。结果表明,掺杂鳞片石墨对复合材料的体积密度影响较小,但对复合材料不同方向的导热性能有显著影响,复合材料沿纤维长度方向的室温热扩散系数随鳞片石墨体积分数和粒径的增加而减小,而垂直纤维长度方向的室温热扩散系数呈现上升趋势;添加16 vol.%粒径约为60μm的鳞片石墨所制复合材料沿纤维长度方向热扩散系数由掺杂前的650.5 mm~2/s降至510.9 mm~2/s,下降了21%,而垂直纤维长度方向的室温热扩散系数由22.4 mm~2/s提高到48.9 mm~2/s,增加了118%。掺杂鳞片石墨明显提高了复合材料垂直纤维长度方向的导电性能和抗弯性能。  相似文献   

10.
采用浸渍-炭化、等温及薄膜沸腾CVI法,分别以煤沥青、糠酮树脂、天然气和二甲苯为前驱体制备了密度为1.75~1.81 g/cm3的炭/炭(C/C)复合材料,对比研究了4种材料的力学与导热性能。结果表明,基体为天然气热解炭(Py C)时材料的弯曲和层间剪切强度较高,分别达到208.7和26.4 MPa,沥青炭为基体时弯曲(125.8 MPa)和层间剪切强度(20.1 MPa)较低。天然气和二甲苯Py C为基体的材料韧性较好。二甲苯Py C呈粗糙层结构,材料具有高的石墨化度、表观微晶尺寸及热导率,其平行和垂直方向的热导率分别达到148.2和75.4 W/(m·K),约为树脂炭基体材料的1.5倍。天然气Py C可作为高强度要求的材料基体,二甲苯Py C有利于提高材料导热与力学性能。  相似文献   

11.
梯度碳化物涂层炭纤维增强复合材料   总被引:1,自引:0,他引:1  
带涂层的炭纤维增强复合材料是由基体材料和涂层构成。基体材料是由炭或陶瓷与增强炭纤维组成,涂层则由碳化硅和从碳化钛、碳化铪、碳化锆三种碳化物中选出的至少一种物质组成。在此种复合材料中,从上述三种炭化物中选出的至少一种作为与基体材料接触的涂层底层,碳化硅作为涂层表层,而底层与表层间则由底层组份逐步、连续地向表层碳化硅过渡。炭纤维增强复合材料进增强炭纤维含在由炭和抗氧化陶瓷组成的基料中,并有以碳化铪为组份之一其它组份可任选的组成物构成的涂层。在些种复合材料中,基体的两个表层由抗氧化陶瓷组成,基体的芯部由炭组成,而基体的表层与芯部之间,则由抗氧化陶瓷逐步、连续地向芯部炭过渡。由此,提高了复合材料的抗氧化性能和耐热冲击性能。  相似文献   

12.
利用电子万能试验机以及Split Hopkinson Compressive Bar(SHPB)测试了2DC/C复合材料在准静态、动态载荷下的压缩性能,结合光学显微镜分析了其在不同应变率下的破坏形貌、讨论了应变率对压缩破坏形貌的影响。结果表明:与准静态(10-4/s)相比,动态载荷下(5×102/s)复合材料的压缩强度提高了55%,压缩刚度提高了66%,具有较强的应变率效应;在准静态载荷下,C/C复合材料沿40°角剪切破坏,断口上炭纤维破坏具有溃散及剪切破坏特征,而在动态载荷下,C/C复合材料破坏成大小不一的碎片,其炭纤维破坏具有劈裂特征。C/C复合材料破坏模式的不同可归结为基体及界面强度的应变率效应。  相似文献   

13.
掺杂难熔金属碳化物对炭/炭复合材料烧蚀微观结构的影响   总被引:10,自引:5,他引:10  
详细分析和比较了3D炭/炭复合材料及其添加难熔金属碳化物的试样在三种烧蚀条件下的烧蚀结果、微观结构及形貌。SEM观察结果显示,纤维与基体间的界面优先烧蚀现象对纯炭/炭试样是普遍存在的,相反,对难熔金属碳化物掺杂的炭/炭试样而言,纤维却总是优先被烧蚀;纤维单丝相对基体优先烧蚀越明显,材料宏观烧蚀率越大。对纯炭/炭试样烧蚀表层区的TEM观察结果表明,在烧蚀过程中炭纤维和基体炭均发生明显的微观结构变化,具体表现为炭纤维的微晶尺寸显著长大,而基体炭原有层片区则出现柱状炭。烧蚀测试条件对材料宏观和微观形貌及烧蚀机理都有影响:  相似文献   

14.
以0、5%、10%、15%和20%(质量分数)5种不同碳纳米管(CNTs)含量的全网胎针刺整体毡为预制体,经化学气相渗透方法增密后,制备出CNTs-C/C复合材料。借助万能试验机测试样品的压缩力学性能,并采用显微镜(PLM)和扫描电镜(SEM),研究了样品的微观组织结构和断口形貌。结果表明,添加纳米管后,有利于改善热解炭结构,同时提高C/C复合材料的压缩强度,且C/C复合材料的压缩强度随着CNTs添加量的增多而增大。当CNTs含量为20%(质量分数)时,复合材料的平行压缩强度为185.02 MPa,垂直压缩强度约200 MPa,相比于未添加CNTs,材料的压缩强度分别提升了36.66%和17.67%。未添加CNTs,复合材料以"假塑性"方式断裂,添加CNTs后,材料出现脆性断裂,且随CNTs含量的增加,脆性断裂方式更加明显。  相似文献   

15.
沥青基炭/炭复合材料的弯曲断裂特征   总被引:14,自引:7,他引:7  
以1KPAN基高强度炭纤维为增强体、以调制中温煤沥青为基体前躯体,采用压力浸渍-炭化工艺制备出了不同密度二维沥青基炭/炭复合材料。经过对复合材料试样进行的弯曲试验表明,其弯曲断裂特征与材料密度具有密切的联系。根据弯曲强度-位移曲线,高密度复合材料表现为脆性断裂,而低密度复合材料表现为韧性断裂。从弯曲断面的SEM图片来看,脆性断裂时的断面比较平整,韧性断裂时断面上有大量炭纤维拔出。炭/炭复合材料的断裂破坏过程实质上就是基体裂纹在材料内的扩展过程,其扩展的途径与界面结合状况有关。裂纹沿界面的扩展将引起基体与纤维的脱粘,脱粘又导致纤维与基体之间的相对滑动,这种相对滑动将吸收相当一部分能量,从而可以延缓材料的断裂过程,起到韧化作用。  相似文献   

16.
炭纤维的环氧树脂浸润特性   总被引:3,自引:3,他引:3  
良好的界面粘结是制备高性能复合材料的关键之一,而树脂与纤维的优良浸润则是其首要前提。通过考察环氧618树脂与环氧AG80树脂在T300和T700两种炭纤维堆积体中分别沿垂直于纤维方向和平行纤维方向的浸润特性,同时模拟实际复合材料成型工艺条件,分析了浸润速率随树脂温度和纤维体积分数的变化规律。研究结果表明,树脂在垂直于T700炭纤维方向的浸润速率明显慢于相同条件下其在平行纤维方向的浸润。并且纤维含量对两种方向的浸润影响不同,垂直纤维方向的浸润速率随纤维体积分数的增加而减缓,而平行纤维方向的浸润速率则随纤维体积分数的增加而加快。以上研究结果均可用于指导复合材料成型工艺,具有较好的实际参考价值。  相似文献   

17.
评价了中国40多年来在航天、航空、光伏、粉末冶金、工业高温炉领域成功应用的针刺C/C,正交3D C/C、径编C/C、穿刺C/C、轴编C/C等五类C/C复合材料的物理、力学、热学、烧蚀、摩擦磨损、使用寿命等性能及特点,并与其他国家相应材料性能进行分析对比,为建立工程应用C/C复合材料共享的数据库平台奠定基础。揭示了炭纤维预制体、炭基体类型、界面结合状态与材料性能的关联度。指出炭纤维预制体结构单元精细化研究和其结构的梯度设计,以及炭基体的优化组合匹配技术,仍是C/C复合材料性能稳定化提升的重点研究方向。  相似文献   

18.
采用化学气相浸渗法在炭纤维表面制备出不同厚度的预炭层,以ZrOCl2溶液浸渍法将锆化物引入含预炭层的预制体中,经热处理、致密化和石墨化等工艺处理,制备出一种含预炭层的ZrC-C/C复合材料。借助X射线衍射仪、扫描电镜以及能谱等手段,对材料的微观结构进行表征,采用三点弯曲实验研究材料的力学性能,并探讨预炭层厚度对材料微观结构及其力学性能的影响。结果表明,当预炭层厚度为1.5-1.7μm时,复合材料的平均抗弯强度可达256.85 MPa,与不含预炭层试样相比,增加了67.01%;抗弯试样表现出脆性断裂模式;材料的抗烧蚀性能略有提高。  相似文献   

19.
韦贺  李祖来  山泉  蒋业华  周荣 《复合材料学报》2016,33(11):2560-2568
为研究WC体积分数对WC_p/Fe复合材料组织、界面及压缩性能的影响,采用粉末烧结法制备了不同WC体积分数的WC_p/Fe复合材料。结果表明:在不同WC体积分数的WC_p/Fe复合材料中,WC颗粒发生了不同程度的溶解,其与基体间均呈冶金结合。随着WC体积分数的增加,WC_p/Fe复合材料的界面等效宽度呈现递减趋势,当WC体积分数为50%时,界面等效宽度最小,为39.8μm;复合材料的压缩强度呈先增大后减小趋势,当WC体积分数达到45%时,压缩强度达到最大值;复合材料的断裂方式由准解理断裂逐渐转向纯解理断裂,当WC体积分数达到50%时,WC_p/Fe复合材料的断裂方式为纯解理断裂。  相似文献   

20.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号