首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于分子结构设计,合成了一种新型高效膨胀阻燃成炭剂PECN,利用该成炭剂制备新型膨胀阻燃聚丙烯(PP)复合材料,其中膨胀阻燃剂(IFR)由硅包裹聚磷酸铵(OS-MCAPP)及PECN组成。结果表明,当IFR的质量分数(m(OS-MCAPP)∶m(PECN)=2∶1)为30%时,复合材料极限氧指数值(LOI)达到最大值28.8,同时复合材料的最大热释放速率为885.5 W/g,与纯PP相比下降了26.2%;该复合材料同时具有良好的热稳定性,700℃剩余质量为18.4%,与纯PP相比大幅提高。扫描电镜照片显示,PECN成炭剂能够促进高质量膨胀炭层的形成,起到保护复合材料基体的作用,从而有效提高其阻燃性。  相似文献   

2.
采用熔融共混法制备了聚丙烯(PP)/磷酸锆(OZrP)膨胀型阻燃材料,热重分析表明添加OZrP的阻燃体系成炭量有所增加。当PP基体中含有25%膨胀型阻燃剂(IFR)时,复合材料的氧指数为33,垂直燃烧测试为UL-94V-1级别,当保持添加剂总量不变时,添加3%OZrP到PP/IFR体系中,氧指数增加到37,垂直燃烧达到V-0级别。IFR与OZrP间存在协效作用,合适的添加比例有利于提高复合材料的阻燃性能。  相似文献   

3.
以聚磷酸铵(APP)、季戊四醇(PER)组成的膨胀阻燃剂(IFR)为主阻燃剂,有机蒙脱土(OMMT)为协效阻燃剂,马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂,以聚酰胺6(PA6)为聚合物成炭剂,采用熔融共混法制备了PP/PA6/POE-g-MAH/IFR/OMMT阻燃复合材料,并研究了PA6对PP阻燃复合材料阻燃性和力学性能的影响。通过极限氧指数(LOI)、垂直燃烧、热重分析、扫描电子显微镜和力学性能测试等手段对PP阻燃复合材料进行了测试与表征。结果表明:成炭剂PA6的加入,可显著地提高PP阻燃复合材料的阻燃性能,当PA6含量为5%时,PP阻燃复合材料的LOI由原来不含PA6时的25.5%提高到了30.0%,垂直燃烧等级由原来的无等级提高到了UL-94 V-0级,且随着PA6含量的进一步增加,LOI在逐渐增大。但PA6的加入,会使PP阻燃复合材料的力学性能下降。  相似文献   

4.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

5.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

6.
以碳酸镍(NC)为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃聚丙烯(PP/IFR)。研究了NC用量对PP阻燃性能的影响,并分析了其阻燃协同作用机理。结果表明,添加少量的NC即可显著提高PP的阻燃性能;当NC添加量为3%时,阻燃PP的氧指数高达37.5%。TGA、FT-IR分析和体式显微镜、SEM观测结果表明,添加NC可以催化MPP/PEPA间的酯化反应,形成更多的交联网络结构,促进PP/IFR体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

7.
利用三聚氰胺聚磷酸盐(MPP)和笼状季戊四醇磷酸酯(PEPA)的阻燃协效作用,复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)/稻壳(RH)复合材料进行阻燃。研究了MPP与PEPA复配比例对PP/RH复合材料阻燃性能的影响。采用垂直燃烧(UL-94)和极限氧指数(LOI)研究了阻燃PP/RH复合材料的阻燃性能,采用热重分析研究阻燃PP/RH复合材料的热分解过程,采用扫描电镜(SEM)观察阻燃PP/RH复合材料燃烧后炭层的形貌。结果表明:当MPP/PEPA总用量为20%(wt%,质量分数),PEPA和MPP的质量分数比为1∶4时,阻燃PP/RH复合材料的LOI值为29.7%,垂直燃烧UL-94通过V-0级,PP/RH复合材料的拉伸强度和弯曲强度分别增加了42.3%和53.6%。热重结果表明:MPP/PEPA复配能够延缓PP/RH体系中PP的分解,并提高了材料的成炭性,使PP/RH复合材料800℃下的残炭率由16.3%提高到了30.3%,残炭率升高了14.0%。通过SEM观察得到:两者复配使PP/RH复合材料燃烧后形成了致密均匀的多孔炭层,从而提高了PP/RH复合材料的阻燃性能。  相似文献   

8.
TiO_2对PP/MPP/PEPA膨胀阻燃体系的协同作用   总被引:3,自引:0,他引:3  
以TiO2为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃聚丙烯(PP)。研究了TiO2用量对PP阻燃性能和协效作用的影响。结果表明:添加少量的TiO2即可显著提高PP的阻燃性能;当MPP/PEPA/TiO2添加量分别为12%、8%和1%时,阻燃PP的氧指数高达31.5。TGA和FTIR分析及SEM和体式显微镜观测结果表明:添加TiO2可以催化MPP/PEPA间的酯化反应,促进体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

9.
以三氧化二镍(Ni2O3)为阻燃协效剂,采用聚磷酸铵(APP)和双季戊四醇(DPER)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯。氧指数(LOI)、垂直燃烧测试(UL-94)表明,添加1%(质量分数,下同)Ni2O3,膨胀阻燃体系LOI达到28.2%,UL-94测试通过V-0级;热失重(TGA)、X射线光电子能谱(XPS)及X射线衍射分析(XRD)表明,Ni2O3使聚磷酸铵热失重速率明显降低,高温残余量显著提高;高温时,Ni2O3分解为NiO,与APP分解产生的多聚磷酸发生化学反应,形成稳定的偏磷酸镍盐,提高了多聚磷酸的热稳定性。研究表明,NiO阻止多聚磷酸分解产生P2O5的过程,使更多的多聚磷酸参与酯化反应,促进体系燃烧成炭,从而形成更加致密的膨胀炭层,提高了材料的阻燃性能。  相似文献   

10.
三氧化二镍协同膨胀阻燃聚丙烯的热降解机理   总被引:1,自引:0,他引:1  
以三氧化二镍(Ni2O3)为阻燃协效剂,采用聚磷酸铵(APP)和双季戊四醇(DPER)复配阻燃剂,制备了具有良好阻燃性能的膨胀阻燃聚丙烯。氧指数(LOI)、垂直燃烧测试(UL-94)表明,添加1%(质量分数,下同)Ni2O3,膨胀阻燃体系LOI达到28.2%,UL-94测试通过V-0级;热失重(TGA)、X射线光电子能谱(XPS)及X射线衍射分析(XRD)表明,Ni2O3使聚磷酸铵热失重速率明显降低,高温残余量显著提高;高温时,Ni2O3分解为NiO,与APP分解产生的多聚磷酸发生化学反应,形成稳定的偏磷酸镍盐,提高了多聚磷酸的热稳定性。研究表明,NiO阻止多聚磷酸分解产生P2O5的过程,使更多的多聚磷酸参与酯化反应,促进体系燃烧成炭,从而形成更加致密的膨胀炭层,提高了材料的阻燃性能。  相似文献   

11.
分别以膨胀型阻燃剂(IFR)为主阻燃剂、有机蒙脱土(OMMT)为协效阻燃剂,对聚丙烯(PP)进行阻燃改性。采用UL-94垂直燃烧、极限氧指数(LOI)、热失重(TG)及拉伸等测试分别表征PP/IFR/OMMT复合材料的阻燃性能、热稳定性能及力学性能,研究了IFR和OMMT对PP阻燃性能、力学性能和热稳定性能的影响。通过红外线光谱仪分析了试样物质组成及扫描电子显微镜(SEM)观察了试样的外观形貌。结果表明:OMMT的加入,使PP/IFR复合材料体系的热稳定性和阻燃性能得到极大提高。当添加2%(质量分数)OMMT,PP/IFR/OMMT复合材料的LOI值从18%上升到23%,阻燃级别从NR提升到V-0,并且无熔滴滴落,同时复合材料的力学性能也较好,拉伸强度达到34.46MPa,断裂伸长率能达到107.19%。  相似文献   

12.
用膨胀型阻燃剂(IFR)和乙烯辛烯共聚物(POE)对聚丙烯(i PP)进行阻燃和增韧改性,比较研究了两种典型增容剂聚丙烯接枝马来酸酐(PP-g-MAH)和乙烯辛烯共聚物接枝马来酸酐(POE-g-MAH)对膨胀阻燃增韧共混复合体系阻燃性能以及力学性能的影响。结果表明:IFR可提高聚丙烯共混物的燃烧性能,但是明显降低材料的力学性能,而增容剂的加入可同时提高复合材料的燃烧性能和力学性能。PP-g-MAH使IFR的分散更均匀,添加1%(质量分数,下同)的PP-g-MAH使复合材料的平均热释放速率、热释放速率峰值、比消光面积平均值以及烟释放总量比未添加增容剂的阻燃材料分别下降24%、30%、56%和46%;而POE-g-MAH能使复合材料形成包覆结构,使其冲击强度明显提高,加入5%的POE-g-MAH可使复合材料冲击强度提高93%。  相似文献   

13.
以三聚氰胺(MEL)和二氯磷酸苯酯(PDCP)为主要原料,通过一步法(A2+B3)制备出一种含磷、氮、三嗪环及苯环结构的超支化聚磷酰胺(HBPPA)成炭剂,运用X射线光电子能谱(XPS)、核磁(1 H-NMR)对其化学结构进行了详细分析,并将其运用于阻燃聚磷酸铵(APP)/聚丙烯(PP)(APP/PP)复合材料。将25%(wt,质量分数)(APP∶HBPPA=3∶1)的膨胀型阻燃剂添加于PP时,制得的阻燃PP复合材料达到了UL-94的V0级别,极限氧指数达到30.6%。  相似文献   

14.
采用聚磷酸铵(APP)、三聚氰胺氰脲酸盐(MC)和聚苯醚(PPO)复配制备膨胀阻燃剂(IFR),与阻燃协效剂间苯二酚双(二苯基磷酸酯)(RDP)进行聚乙烯(PE)阻燃。借助氧指数、垂直燃烧测试,探讨IFR与阻燃协效剂RDP间的协效性,研究RDP不同添加量对IFR阻燃复合材料燃烧性能的影响,并对其力学性能进行测试。利用TG,DTG热分析技术对协效性进行验证。结果表明:RDP与IFR具有阻燃协效作用,RDP的协效性主要在热分解的第一阶段发挥作用,可催化APP提前分解,RDP的加入降低了热分解过程的热释放量,促进了多孔泡沫炭层的形成,并显著提高材料的残炭量;当RDP的添加量为5%(质量分数)时,氧指数(LOI)达到最大值31,并通过UL94V-0级。可见RDP与APP/MC/PPO阻燃剂复配可大幅提高PE的抗燃烧性能。  相似文献   

15.
采用极限氧指数(LOI)测试、垂直燃烧UL-94测试、热重分析(TG)和锥形量热仪(CCT)测试研究了膨胀阻燃剂(IFR)/白度化包裹红磷(WMRP)对ABS复合材料的阻燃性能和热稳定性的影响。其中IFR是由硅包裹APP(SiMCAPP)和可膨胀石墨(EG)以质量比为1∶3的比例组成的。结果表明,固定IFR和WMRP总质量分数为15%时,当WMRP的添加量为3%(wt,质量分数,下同)时,阻燃ABS复合材料LOI值最大为30.2%,UL-94测试达到V-0级,阻燃材料在700℃的残炭率为23.7%。锥形量热仪实验表明,相对于纯ABS添加3%WMRP的复合材料其最大热释放速率降低至201.8KW/m~2,总的热释放速率降低至60.7MJ/m~2,总烟释放量降低了47.9%。研究结果显示WMRP与膨胀阻燃剂之间存在阻燃协效作用,加入适量的WMRP可以提高膨胀阻燃剂阻燃效果。  相似文献   

16.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

17.
以六氯环三磷腈、对羟基苯甲醛及γ-氨丙基硅烷三醇(KH553)为反应原料,合成了具有席夫碱结构的有机硅型成炭剂六(γ-氨丙基硅烷三醇)环三磷腈(HKHPCP)。以HKHPCP与聚磷酸铵(APP)的复配物为抗熔滴剂,以N-烷氧基受阻胺(NOR116)为阻燃协效剂,通过熔融共混技术制备了膨胀阻燃聚丙烯(PP)基复合材料(APP-HKHPCP-NOR116/PP)。利用FTIR、核磁共振(1 H和31P NMR)对HKHPCP的化学结构进行了表征。采用热失重、极限氧指数、垂直燃烧、锥形量热、拉曼光谱和SEM研究了阻燃体系的热降解行为、阻燃性能及炭层的石墨化程度和致密性。HKHPCP的热失重结果表明,其在氧气氛围下的初始分解温度为300.2℃,1 000℃时残余率为34.8%。当添加总量为30wt%的阻燃剂时,APP-HKHPCP-NOR116/PP复合材料的极限氧指数(LOI)达到43%,且能通过UL-94V-0级,其热释放速率(HRR)、总热释放速率(THR)及烟释放速率(SPR)、总烟释放量(TSP)相比于纯PP分别降低了75.0%、50.5%和88.0%、80.8%,表现出显著的隔热、抑烟性能。APPHKHPCP-NOR116/PP复合材料燃烧后形成了高石墨化、致密的炭层。  相似文献   

18.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

19.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

20.
刘喜山  曹博  纪文斐  孙军  张胜 《材料工程》2019,47(6):101-107
通过三聚氰胺改性脲醛树脂包覆的方法来制备阻燃聚苯乙烯泡沫(EPS),阻燃体系以聚磷酸铵为基础,并选用3种二维层状无机物和硼酸锌的复配体系作为协效剂,对比了不同阻燃体系对聚苯乙烯泡沫的阻燃、抑烟和热稳定性的影响。实验结果表明:当膨胀石墨与硼酸锌的添加量为2∶1(质量比),两者总添加量为24phr时,复合材料的极限氧指数可达32.6%,UL-94垂直燃烧测试达V-0等级,烟密度等级降低至27.31;较之添加纯膨胀石墨EPS样品,协效剂硼酸锌的引入,使样品残炭强度由14.3增加到86.1。热失重分析结果表明,协效剂的加入使得样品热稳定性和残炭率均有所上升。从残炭宏观形貌和扫描电镜结果可以看出,硼酸锌的存在,使样品燃烧后残炭更加完整、致密,裂痕与破损明显减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号