首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
智能电网的快速发展带动了智能电表的普及应用,同时也伴随着日益严重的雷电灾害问题。为了合理保护智能电表等终端采集设备,需要研究雷电浪涌对其危害。通过对智能电表进行雷电浪涌抗扰度试验,分析其损坏形式和失效原因。利用ATP-EMTP软件搭建配电系统模型,分析雷电侵入波对智能电表的危害。试验与仿真结果表明:智能电表损坏形式主要为表内采集器损坏、电源模块损坏、RS485口损坏;智能电表终端距变压器距离越近,终端过电压幅值越大;接地电阻对终端SPD保护效果影响较大,接地电阻的增大降低了保护效果。在智能电表终端安装SPD与前端SPD实现配合可以有效保护智能电表,但是需要尽可能降低接地电阻值。  相似文献   

2.
配电变压器的安全运行面临着严重的雷害威胁,需要合理分析其雷害绝缘故障影响因素。通过EMTP软件计算配电变压器遭受的雷电直击过电压和感应过电压,根据雷电过电压和绝缘故障出现的随机特性,利用区间组合统计法考虑雷电流幅值、雷电流波头陡度、雷击方位等因素的影响,计算配电变压器雷害绝缘故障概率。讨论线路安装避雷器、变压器高压侧安装避雷器对于降低配电变压器雷害绝缘故障的防护效果。分析结果表明:配电变压器雷电过电压波形均存在一定程度振荡,感应过电压波形振荡更为剧烈,但雷电直击过电压对变压器绝缘危害更大;配电变压器过电压概率密度分布曲线随着雷电流波头时间的减小、雷击点距线路水平距离的减小而整体右移,出现高幅值过电压的概率增大,导致变压器绝缘故障概率随着波头时间的减小、雷击点距线路水平距离的减小而增大。配电线路和变压器高压侧安装避雷器能够有效减少变压器雷害绝缘故障,但防护效果受接地电阻影响非常大,因此需要尽可能降低避雷器接地电阻以减少绝缘故障。  相似文献   

3.
配电变压器是重要的电力转换设备,其安全可靠运行影响着配电网的供电质量。雷击造成的感应过电压是造成配电变压器故障的主要原因之一,目前我国大部分地区只重视在配电变压器高压侧安装避雷器,但这并不能起到有效的防护作用。本文建立了配电变压器的模型,在ATPEMTP中对雷电感应过电压侵入配电变压器进行仿真,得到高压绕组中性点和低压绕组是防护的薄弱点,并对低压侧加装避雷器、改善接地电阻、高压侧加装电感这3种防护措施进行仿真分析和效果评估。结果显示:在低压侧加装避雷器可以较大提升配电变压器的雷电防护能力,辅以改善接地电阻和加装电感能够进一步提升防护效果,本文最后对防护方案的整体经济效益进行简要分析,对配电变压器的雷电方案防护设计具有指导意义。  相似文献   

4.
杨剑蓝  黄磊  薛斌  翁亚利  李刚 《电瓷避雷器》2023,(4):129-134+140
做好屋顶太阳能光伏系统的雷击浪涌过电压防护对于确保其长期稳定运行十分重要。利用PSCAD软件搭建屋顶光伏系统电路模型,计算建筑外部防雷系统遭受雷击时光伏阵列边框和逆变器直流侧浪涌过电压,分析了不同雷电流波形下SPD的防护效果,讨论不同SPD保护模式的优劣。分析结果表明:未安装SPD时,即使与建筑外部防雷系统进行了等电位联结,遭受雷击后光伏阵列边框和逆变器直流侧仍会出现较高幅值过电压,且雷电流波头时间越短,过电压幅值越高;安装SPD后,雷击浪涌过电压能够得到有效遏制,保护设备免遭损坏。综合考虑不同SPD保护模式的保护效果与能量分配,推荐在直流线缆正极、负极、引下线三者之间均安装SPD,以实现对内部电气电子设备的精密防护。  相似文献   

5.
气体绝缘金属输电线路(GIL)因其适合于远距离、大容量电力传输应用前景广泛,必须合理分析GIL雷击暂态特性以提高其防雷水平。介绍GIL技术相关优点,在ATPEMTP中建立500 kV架空线路、杆塔和GIL模型,分析雷电绕击和反击情况下GIL暂态过电压,比较GIL和XLPE过电压幅值差异,讨论避雷器对GIL侵入波过电压防护效果。仿真结果表明:绕击情况下GIL暂态过电压高于反击情况;GIL末端过电压高于其首端过电压,且随着GIL长度的增加,侵入波过电压幅值降低;在GIL首末两段安装避雷器能够有效提高其安全裕度;同等条件下,GIL雷电侵入波过电压高于XLPE电缆。GIL技术具体应用时需要详细分析其暂态特性。  相似文献   

6.
煤矿配电网变压器中性点一般对地绝缘,一旦发生雷击事故,将在中性点产很高的过电压而损坏变压器。因此对雷击下变压器中性点过电压表现特性及引入过电压保护设备后的限压效果研究具有非常大的实际意义。笔者针对山西煤矿集团万家庄煤业35 kV变电站主变中性点对地放电和母线短路故障,调研煤矿配电网防雷现状,结合雷电波过电压传播理论及35kV变压器中性点绝缘性能,分析中性点对地放电事故的原因。并提出线路绝缘子与可调保护间隙的绝缘匹配和、变压器中性点经氧化锌避雷器接地等改造措施。并利用电磁暂态分析程序ATP-EMTP对雷电波过电压侵入变电站情况下变压器中性点经过避雷器接地进行仿真,验证在变压器中性点增设避雷器来限制中性点雷电波过电压的措施是可行的。  相似文献   

7.
雷电感应过电压导致配电线路发生跳闸或故障的比例要远高于雷电直击,因此需要分析采用线路避雷器对配电线路感应过电压的防护效果。利用EMTP软件编程计算线路雷电感应过电压,分析安装线路避雷器对感应过电压的防护效果,讨论雷电流幅值和雷击点距线路距离、避雷器安装间距、接地电阻对避雷器抑制感应过电压效果的影响。分析结果表明:配电线路安装线路避雷器后能够在一定程度抑制雷电感应过电压;雷电流幅值越高、雷击点距线路近,避雷器抑制感应过电压的效果越弱;避雷器安装间距影响对感应过电压的防护效果,安装越密,线路感应过电压降低越明显。接地电阻对避雷器感应过电压防护影响非常大,过高的接地电阻会严重削弱避雷器对感应过电压的抑制效果,因此需要尽可能降低避雷器接地电阻。  相似文献   

8.
为了有效利用电涌保护器对低压配电系统进行雷电过电压防护,需要对电涌保护器保护模式进行研究。利用EMTP软件搭建1.2/50-8/20μs组合波和0.5μs-100k Hz标准振荡波发生电路,同时采用IEEE氧化锌压敏电阻模型进行仿真冲击。分析TN-C-S配电系统中不同电涌保护器保护模式的防护效果。最后讨论电涌保护器接地电阻阻值对线间电位差影响。仿真结果表明:仅在L线与N线或L线与PE线间安装SPD,不能够有效保护负载设备;在L线与N线、N线与PE线间安装SPD或三线间均安装SPD时,防护效果较好,但前种方式下零地电位差过高;当电涌保护器接地电阻阻值增加时,线间电位差显著增大,防护效果下降。需要尽量降低接地电阻阻值以尽可能抑制线路过电压。  相似文献   

9.
配电线路遭受雷击后,沿线路侵入的雷电浪涌十分容易导致变压器低压侧负载设备的损坏,有必要对此防护进行研究。利用PSCAD软件搭建配电系统模型,采用高频变压器模型与IEEE氧化锌压敏电阻模型,分析变压器低压侧负载性质对负载端过电压的影响,讨论不同负载下变压器低压侧电涌保护器对应的有效保护距离。分析结果表明:负载端过电压波形存在明显的振荡,阻性负载端过电压衰减较快,感性负载和容性负载端过电压持续时间较长。阻性负载或感性负载幅值较小时,负载端过电压随着SPD与负载间连接电缆长度的增加而减小;阻性负载幅值较大时,负载端过电压随着电缆长度的增加而增大,感性负载幅值较大时则随着电缆长度的增加呈现出先增加后降低的趋势;容性负载端过电压随着电缆长度的增加而增大。Ⅰ类保护水平对应的有效保护距离小于Ⅱ类,无论是阻性、感性或是容性负载,SPD有效保护距离都随着负载幅值的增大而减小。容性负载对应的有效保护距离普遍较小,需要在设备前安装末端SPD才能确保设备得到有效防护。  相似文献   

10.
雷电侵入波过电压是500 k V敞开式升压站雷害事故的主要原因。用ATP-EMTP软件对某500 k V升压站雷电侵入波过电压进行计算分析,研究了雷击点位置、杆塔冲击接地电阻、避雷器至主变距离、电缆进线型号以及冲击电晕对雷电侵入波过电压的影响规律,计算了500 k V电缆进线升压站避雷器的保护距离。研究表明:降低杆塔冲击接地电阻并非总是可以降低侵入波过电压,对于各基杆塔,存在一个最有效的降阻区间;冲击电晕对500 k V升压站雷电侵入波过电压影响显著,且对于不同设备及在不同运行方式下,其影响也不同。  相似文献   

11.
负载性质对于设备的雷电过电压保护存在一定影响,需要详细研究负载性质对电涌保护器(SPD)配合的影响。利用EMTP软件,搭建类似真实雷电过电压的0.5μs-100kHz标准振荡波发生电路,采用P-G压敏电阻等效电路模型进行仿真冲击。分析单级SPD和两级SPD防护下阻性、感性、容性负载幅值对负载端过电压的影响,最后讨论不同负载对应的有效保护距离。仿真结果表明:负载幅值对被保护设备过电压数值影响较大,阻性负载或感性负载情况下,过电压随着负载幅值的增大而增加,容性负载情况下,过电压随着负载幅值的增大而降低。两级SPD防护方式能够进一步降低被保护设备过电压,设备能够得到更好地保护,同时抑制感性负载过电压波形振荡。阻性负载情况下,被保护设备过电压随着SPD与负载间线缆长度的增加而增大,容性负载和感性负载情况下,过电压则呈现先增大后减小的变化趋势。标准振荡波冲击下需要重点考虑感性负载和容性负载的防护。  相似文献   

12.
雷电击中配电线路后,沿线路入侵的雷电浪涌十分容易造成配变低压侧设备的损坏,安装避雷器能够提高线路的耐雷水平,为了有效的提高避雷器的防雷效率,有必要分析其对线路终端设备雷击暂态特性的影响。利用EMTP软件搭建完整的安装柱上变压器的配电系统模型,分析避雷器接地电阻、安装避雷器的杆塔之间的间距及敷设避雷线三种因素对终端设备雷击暂态特性的综合影响。结果表明:终端设备过电压随避雷器接地电阻的增大而增大,接地电阻越大,增大幅度越小;敷设避雷线后,终端设备过电压有一定程度的降低;安装避雷器的杆塔之间的距离越小,终端设备过电压也越小。最后得出通过避雷线的安装以及减小安装避雷器的杆塔之间的距离,可以在不降低终端低压设备雷电防护水平的情况下适当的增加高电阻率地区避雷器的接地电阻,所得结果对于降低接地结构的成本以及对配电线路终端设备的雷电防护有一定的指导意义。  相似文献   

13.
通过对低压输电线路中并联接入电容器的理论分析,得出了当低压输电线路中有雷电感应过电压时,电容器能够降低雷电过电压的幅值;低压输电线路中有雷电波传输时,根据雷电波传输的折射、反射原理,电容器能够降低雷电波的陡度;电容器与电涌保护器并联组合使用,能够降低SPD的残压。进行的模拟雷电感应过电压以及模拟雷电流冲击试验验证了并联在低压输电线路中的电容器能够降低感应过电压的幅值、雷电波陡度以及降低SPD残压的作用。提出了在低压输电线路的雷电防护中,电容器与SPD并联使用能够更有效地提高电子、电气设备的防雷效果。  相似文献   

14.
GIS变电站内的隔离开关切合空载母线操作时,引起的特快速暂态过电压(VFTO)及输电线路雷击产生的雷电过电压对变电站内的电气设备特别是变压器构成威胁。采用在隔离开关与母线之间、变压器与避雷器之间安装高频磁环(并联阻尼电阻)的保护方法,并结合实例进行仿真分析,结果表明,安装高频磁环(并联阻尼电阻)能有效降低VFTO和雷电过电压的幅值和陡度。  相似文献   

15.
陈梁金  刘青  赵峰  施围 《电瓷避雷器》2005,(1):35-37,43
雷电波沿着输电线路侵入变电所,对变电所设备构成了很大的威胁。在某750kVGIS变电站的基础上,建立了以气体绝缘输电线路(GIL)作为GIS出线的750kVGIS-GIL系统。通过雷击塔顶和绕击输电线路这两种雷击方式以及考虑地面倾角、接地电阻的影响,利用EMTP程序计算了当雷电波侵入GIS-GIL系统后引起的在隔离开关(DS)、断路器(CB)、电流互感器(CT)以及变压器上的雷电过电压,并根据各设备能够有效地抑制雷电侵入波,从而保证了该750kVGIS-GIL系统内部各设备的正常运行。  相似文献   

16.
配电线路因雷电感应导致故障的比例要远高于雷电直击,因此需要合理分析配电系统终端的雷电感应过电压防护。通过EMTP中的MODEL模块编程计算线路雷电感应过电压,分析雷击点距线路垂直距离和回击速度对配电终端过电压的影响,讨论不同负载性质下终端过电压随低压线路长度趋势,最后分析配电终端前安装SPD的防护效果。分析结果表明:10 kV线路附近发生雷击时,传递至低压配电终端的雷电感应过电压幅值仍然较高,会超过设备冲击耐受电压;配电终端雷电过电压随着雷击点距线路垂直距离的增加而降低,随着回击速度的增加而增大;配电终端过电压在阻性负载与感性负载幅值较小情况下随着220 V线路长度增加而降低,在容性负载情况下随着线路长度的增加而增大。配电终端前安装SPD后能够有效降低负载过电压,较好地保护终端设备。  相似文献   

17.
架空线路未设置线路及绝缘子闪络防护、变压器二次侧未设置合理电涌防护等措施易导致线路及绝缘子闪络导致线路跳闸、雷电电磁脉冲造成二次侧设备损坏等故障频繁发生。基于EMTP搭建典型低压配电入户线路变压器一、二次侧模型,计算不同电涌保护器安装方式下瞬态过电压变化特性及不同节点幅值分布特征,验证了高低压侧及二次侧设置三级SPD的优化防护效果,对负载及接地电阻与各级瞬态过电压分布相关性影响进行横向分析,总结出降低直击线路概率、实现高低压侧间隙性避雷器放电特性与二次侧三级SPD伏安特性合理绝缘配合方案。  相似文献   

18.
为了有效利用电涌保护器进行雷电防护,需要对雷电过电压作用下配电网SPD配合保护进行分析。本文利用EMTP软件搭建简化配电系统模型对IEEE标准推荐压敏电阻片模型进行仿真冲击,通过累积能量计算前后级SPD失效概率以及整体配合失效概率,计算前后级SPD残压与分流,讨论雷电流的波尾时间、前后级SPD连接电缆长度、通流容量对配合失效概率的影响。研究结果表明:SPD两级高低配合方式下,终端用电设备过电压得到了有效的抑制;前级SPD承受大部分雷电流和能量;前后级SPD失效概率及整体配合失效概率均随着雷电流波尾时间的增大而增加;整体配合失效概率和前级SPD失效概率随着连接电缆长度的增长而增加,后级SPD失效概率随着连接电缆长度的增长而降低。SPD通流容量对失效概率有一定影响,通流容量越大,整体配合失效概率越低。应选用通流容量较大的SPD作为前端防护器件。  相似文献   

19.
气体绝缘金属封闭输电线(GIL)因其具有容量大、传输损耗少等优点逐步得到推广,需要分析GIL雷电过电压威胁及其相应防护措施。利用EMTP软件搭建500 k V输电线路和GIL模型,计算线路发生反击和绕击情况下GIL雷电过电压,比较过电压暂态特性差异,分析过电压对绝缘威胁及安装额外金属氧化物避雷器对过电压的抑制效果,讨论GIL上避雷器安装位置对防护效果的影响。分析结果表明:线路发生反击时,GIL过电压波形振荡比绕击时剧烈,但过电压幅值要低于绕击情况。距离雷击点越远,GIL过电压幅值越高。GIL过电压随着雷击电流幅值的增加而增大,在GIL上安装额外避雷器基本能够实现有效雷电过电压防护,但防护效果受避雷器安装位置影响。  相似文献   

20.
风力发电场中输电线路是防雷保护的重要部分,当直击雷击在输电线路上时,不仅会对线路本身带来破坏,其产生的侵入波过电压将顺着线路传递至风电机组,可能会引起变压器的损坏,从而导致风电机组的停运。以某风力发电场雷击事故为例,将通过电磁暂态软件程序ATP/EMTP建立雷电直击输电线路的模型(雷电流模型、杆塔模型、输电线路电缆模型、避雷器模型、绝缘子串模型和变压器模型),通过仿真计算出升压变压器上的暂态过电压和流过电缆的最大雷电流,并仿真了在安装线路避雷器和降低接地电阻时,雷击点处的雷电过电压和过电流值。最后通过综合对比提出了在1号、2号杆塔安装避雷器和降低杆塔接地网电阻值的两种保护措施来对风电场场内输电线路进行有效防雷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号