首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表面纳米化预处理对316L不锈钢渗氮层摩擦学性能的影响   总被引:2,自引:0,他引:2  
为改善奥氏体不锈钢的表面硬度和耐磨性,采用超声滚压与离子渗氮复合工艺对316L不锈钢表面进行了表面强化处理。利用扫描电镜(SEM)、硬度计、X射线衍射仪(XRD)和能谱仪以及摩擦磨损试验机等测定了渗氮层的硬度、深度、含氮量和物相组成,研究了表面晶层组织结构对离子渗氮行为和渗氮层在润滑油条件下摩擦学性能的影响。结果表明:直接渗氮和超声滚压/渗氮试样表层组织均由S、γ'、ε和Cr N相组成,渗氮层厚度均为20μm,直接渗氮层以S相为主,超声滚压后渗氮层以ε和γ'相为主,组织结构较为致密;超声滚压/渗氮层的平均渗氮含量是直接渗氮层的2.88倍,摩擦系数降低了0.04,显微硬度和耐磨性是直接渗氮层的1.15倍和2.76倍;超声滚压处理诱使316L不锈钢表面形成的纳米晶层组织结构增强了渗氮试样表面的催渗效能和对渗氮层的支撑强度,超声滚压后渗氮试样的表面耐磨性能最好。  相似文献   

2.
针对同一种材料经不同钝化工艺处理后钝化膜的形成、耐蚀性的优劣、钝化后腐蚀行为的比较鲜有报道,为此,通过极化曲线、电化学阻抗谱、临界点蚀温度、再钝化温度测试等方法考察了自然钝化、阳极钝化和酸洗钝化3种钝化工艺对S22053不锈钢耐腐蚀性能的影响,并通过扫描电镜观察了腐蚀前后试样表面的表面形貌。结果表明:阳极钝化和酸洗钝化都可以提高S22053不锈钢的耐腐蚀性能,采用20%(质量分数)硝酸酸洗钝化后不锈钢的耐腐蚀性能最好;不同钝化工艺对S22053不锈钢的点蚀电位影响并不显著,但会显著改变不锈钢的阻抗和临界点蚀温度;点腐蚀发生后腐蚀前沿有明显的沿晶腐蚀倾向,同时伴随有奥氏体晶粒的优先溶解。  相似文献   

3.
为改善生物医用钛合金的表面性能及植入人体后的耐腐蚀性能,利用双层辉光等离子技术在近β钛合金TLM表面进行渗氮处理。通过金相显微镜、X射线衍射仪、显微硬度仪、电子显微镜及电化学工作站研究渗氮后TLM钛合金的截面金相、相结构、显微硬度及表面改性前后TLM钛合金在人工模拟体液(hank's溶液)中的电化学腐蚀性能。结果表明:近β型钛合金TLM表面渗氮处理后,可得到一层致密、均匀的改性层,厚度约4~5μm。其主要成分为Ti_2N和Ti-cubic,显微硬度由(238±10)提升至(874±10)HV;电化学腐蚀实验中渗氮改性层的E_(corr)从-0.5923上升至-0.4904 V,I_(corr)由3.653×10~(-7)降低至8.742×10~(-8)/cm~2,交流阻抗值显著增大,表明TLM钛合金表面渗氮改性处理可以提升其在人工模拟体液中的耐腐蚀性能。  相似文献   

4.
以水性纳米Al_2O_3溶胶、γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)和甲基三甲氧基硅烷(MTMS)为原料,采用溶胶凝胶法,制备了水性纳米Al_2O_3/聚硅氧烷杂化镁合金防腐涂层。采用电化学交流阻抗技术、动电位极化曲线等手段研究了纳米Al_2O_3/(GPTMS+MTMS)摩尔比对涂层的耐腐蚀性能的影响。结果表明,涂层的耐腐蚀性能随着摩尔比的增大呈现先增强后下降的趋势,其中摩尔比为1∶5的杂化涂层耐腐蚀性能最佳,在3.5%Na Cl溶液中浸泡75 h后的交流阻抗值为6.68×10~6Ω/cm~2,腐蚀电流密度为4.19×10~(-9)A/cm~2,比裸露AZ31B基板的腐蚀电流密度降低了4个数量级。另外,涂层的扫描电镜照片显示,纳米Al_2O_3粒子均匀分散于涂层之中,粒子与有机物粘连紧密,无明显的团聚现象。  相似文献   

5.
目前,对AISI 316奥氏体不锈钢单一面心结构γΝ相改性层耐磨抗蚀性能的报道差异较大,有些甚至相互矛盾。采用等离子体源渗氮技术,于450℃,6 h改性AISI 316奥氏体不锈钢,获得了厚度约为17μm、峰值氮浓度20%(原子分数)、最大显微硬度1 510 HV0.1 N、单一面心结构的γΝ相改性层。分别采用WTM-2E球盘式磨损仪和PARSTAT2273电化学工作站,研究了干摩擦条件下γN相/Si_3N_4陶瓷球的摩擦磨损行为和在3.5%NaCl溶液中的电化学腐蚀行为,揭示了γN相改性层的耐磨抗蚀机理。结果表明:γΝ相改性层的磨损机制由原不锈钢的黏着磨损转变为氧化磨损,摩擦系数由0.88降低至0.65,磨损体积由0.13 mm~3降低到9.50×10-3mm~3,耐磨性能显著提高;γΝ相改性层阳极极化曲线未发生点蚀击穿过程,容抗弧直径增大,相位角平台变宽;采用等效电路Rs-(Rct//CPE)拟合的电荷转移电阻Rct由原不锈钢的1.006×105Ω·cm~2增至1.377×106Ω·cm~2,计算的双电层电容Cdl由88.4m F/cm~2降低至77.8 m F/cm~2,抗蚀性能明显得到了改善。  相似文献   

6.
采用直流反应磁控溅射技术在304不锈钢表面制备Cr/a-C:H薄膜进行表面改性,有望提高其在NaCl溶液中的耐蚀性能。采用Raman光谱仪、X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)和原子力显微镜(AFM)研究了Cr/a-C:H薄膜的微观结构和表面形貌;利用接触角测量仪和动电位极化曲线研究了304不锈钢表面沉积Cr/a-C:H薄膜前后的润湿性和抗腐蚀性能。结果表明:所制备薄膜为Cr_3C_2纳米晶镶嵌非晶碳的典型纳米晶/非晶复合薄膜;薄膜表面光滑、结构均匀致密;沉积Cr/a-C:H薄膜后304不锈钢表面由亲水性转为疏水性,水接触角达到95°;在3.5%NaCl溶液中304不锈钢表面沉积Cr/a-C:H薄膜体系的自腐蚀电位约为-0.06 V,腐蚀电流密度为2.95×10~(-8)A/cm~2,极化电阻为14.07×10~5Ω·cm~2,相比于表面无薄膜防护的304不锈钢,该体系的抗腐蚀性能得到明显提升。  相似文献   

7.
添加纳米颗粒可改善金属表面膜层的性能,但目前添加纳米颗粒改善镁合金表面磷化膜性能的报道较少。通过向磷化处理液中添加纳米二氧化铈(nano-CeO_2)颗粒在镁合金表面制备了一层纳米二氧化铈/磷酸盐复合转化膜,采用X射线衍射仪(XRD)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和极化曲线等手段研究了添加nano-CeO_2颗粒对膜层成分和防护性能的影响,讨论了nano-CeO_2颗粒的作用机制。结果表明:复合转化膜的相成分为Zn_3(PO_4)_2·4H_2O、Zn_2Mg(PO_4)_2和CeO_2,在单组分磷化膜成分的基础上多出了CeO_2相。在硼酸缓冲溶液中,单组分磷化膜的膜层电阻(R_c)和低频阻抗值(R_(0.01 Hz))分别为561.74 kΩ·cm~2和938.11 kΩ·cm~2,而复合转化膜的R_c和R_(0.01 Hz)分别为2 428.98 kΩ·cm~2和3 985.61 kΩ·cm~2;与此同时,覆盖复合转化膜镁合金的腐蚀电流密度为4.05×10~(-7)A/cm~2,而覆盖单组分磷化膜镁合金的为8.38×10~(-6)A/cm~2,R_c和R_(0.01 Hz)的增大以及J_(corr)的减小说明复合转化膜的防护作用明显优于单组分磷化膜的防护作用。nano-CeO_2颗粒的作用机制主要归因于两个方面:第一,nano-CeO_2颗粒在处理液中的添加有利于磷酸盐晶核的形成;第二,nano-CeO_2颗粒作为一种不溶性固体粒子在膜层中的存在可以强化膜层的物理屏蔽效应。  相似文献   

8.
以银铜合金为靶材,利用辉光等离子体在AISI304不锈钢表面同时渗入银和铜,制备性能优良的抗菌不锈钢。对渗层的形貌、化学组成、耐蚀性能和抗菌性能进行了研究,结果表明,所得渗层在不锈钢表面分布均匀,Ag/Cu元素质量比为4.9∶3;不锈钢表面渗层腐蚀电位由-0.103V提高到0.07V,自腐蚀电流密度从1.66×10-7A/cm2降至5.813×10-9A/cm2,耐腐蚀性能有所提高;渗层对大肠杆菌和金黄色葡萄球菌的杀菌率均达100%。  相似文献   

9.
在室温下采用等通道转角挤压(ECAP)对工业纯铝(CP-Al)圆棒料进行12道次挤压,通过光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、单向拉伸与电化学测试研究了超细晶纯铝的微观组织、力学性能和耐腐蚀性能.结果表明,ECAP后纯铝试样晶粒细化,4道次和8道次后晶粒尺寸分别达到576、482 nm.同时,显微硬度和抗拉强度显著提高,由初始的26.8 HV、79.2 MPa分别增加到8道次的48.3 HV、146.4 MPa,而塑性有所降低,断裂伸长率由初始的22.1%降低到4道次的9.5%.在质量分数为3.5%NaCl溶液中进行了开路电位(OCP)、极化曲线(PD)及电化学阻抗谱(EIS)测试,并观察腐蚀形貌.研究表明,随着ECAP道次的增加,腐蚀电位正移(-0.965~-0.860 V)、电荷传递电阻增大(1.741×10~4~4.798×10~4Ω·cm~2)、点蚀电位正移(-0.818~-0.734 V)、腐蚀电流密度降低(12.910~3.288μA/cm2),且腐蚀形貌有所改善,表明其耐腐蚀性能提高.这是由于随着挤压道次的增加,晶粒细化,加速了表面钝化膜的形成,形成的钝化膜更为致密,从而降低了腐蚀速率.  相似文献   

10.
采用直流反应磁控溅射技术在304不锈钢表面沉积TiC/a-C∶H纳米复合薄膜,并研究了TiC/a-C∶H纳米复合薄膜对不锈钢耐腐蚀性能的影响。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)观察,结果表明薄膜表面光滑且薄膜结构均匀致密。Raman光谱和XRD测试结果表明,薄膜具有纳米晶TiC镶嵌非晶碳基质的典型纳米复合微结构。通过测量薄膜的静态接触角分析薄膜的润湿性,不锈钢表面沉积TiC/a-C∶H纳米复合薄膜后疏水性能明显提高,水接触角高达98°。电化学腐蚀测试结果表明,不锈钢表面沉积TiC/a-C∶H纳米复合薄膜体系在质量分数为3.5%的NaCl溶液中自腐蚀电位约为-0.09V,腐蚀电流密度为2.43×10-8 A·cm-2,与无薄膜防护的裸露不锈钢相比,其耐腐蚀性能得到明显改善。  相似文献   

11.
目的 通过对铜箔进行硅烷化处理,增强铜箔的耐腐蚀性能。方法 采用化学浸泡法在9 µm电解铜箔表面制备γ-氨丙基三乙氧基硅烷偶联剂(APTES)硅烷膜层、Ce3+/APTES膜层、CeO2/APTES膜层和Ce3+/CeO2/APTES膜层,对改性硅烷膜试样与空白试样进行接触角对照实验,对硅烷表面润湿性进行表征。在3.5%(质量分数)NaCl溶液中,对空白样、单一硅烷膜层、Ce3+/APTES硅烷膜层和Ce3+/CeO2/APTES硅烷膜层进行浸泡实验和电化学实验,研究改性膜层前后的耐腐蚀性能。通过扫描电子显微镜(SEM)观察膜层表面形貌,并利用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对纳米粒子结构进行分析,探讨改性膜层的钝化机理。结果 Ce(NO3)3/CeO2/APTES复合膜层的接触角最大,接触角为106.6°,表现出最佳的疏水性。同时,其表面的腐蚀坑数量和面积最小。在盐水浸泡和电化学实验中,各试样的腐蚀电流密度随着浸泡时间的延长而上升,Ce3+/CeO2/APTES试样的腐蚀电位发生正移,具有较低的腐蚀电流密度,并且该试样具有最高的相角和最高的阻抗值,远高于Ce3+/APTES试样。结论 与单一硅烷膜层和仅分别添加Ce(NO3)3、CeO2 2种缓蚀剂的膜层相比,Ce(NO3)3/CeO2/APTES复合膜层的防护效果有明显提升,且Ce3+与CeO2之间的协同作用大大提高了硅烷膜层的耐腐蚀性能。  相似文献   

12.
纳米多层涂层在钛合金磨蚀防护领域具有重要应用。本实验采用电弧离子镀膜技术,在TC4钛合金表面制备TiN、CrN及TiN/CrN纳米多层涂层,分别对涂层的微观形貌、相结构、硬度、膜基结合力、摩擦磨损性能和电化学腐蚀性能进行了系统研究。结果表明,TiN/CrN纳米多层涂层沿(111)面择优取向生长,结构致密,调制周期为25 nm,硬度为24 GPa,多层结构打断柱状晶生长,有效阻断腐蚀介质扩散到基体的通道。相较于TiN、CrN涂层,TiN/CrN膜基结合力有显著提高。TiN/CrN涂层磨损率为3.44×10~(-7)mm~3·N~(-1)·m~(-1),自腐蚀电流密度(i_(corr))为3.16×10~(-8)A/cm~2,显著低于TC4及TiN、CrN涂层,说明TiN/CrN纳米多层涂层的耐磨/耐腐蚀性能优于TiN、CrN单层涂层,并能对TC4基体在摩擦腐蚀环境下提供更好的防护。  相似文献   

13.
磁控溅射TiN/Cu-Zn纳米多层膜腐蚀和抗菌性能研究   总被引:1,自引:1,他引:0  
采用双靶磁控溅射的方法在不锈钢表面沉积了TiN/Cu-Zn纳米多层膜,研究了多层结构对膜层耐腐蚀性能和抗菌性能的影响,以及表面腐蚀与抗菌的关系。结果表明,Cu-Zn层比较薄时,膜层的耐腐蚀性能比较好,随着Cu-Zn层厚度的增加耐腐蚀性能显著下降。Cu-Zn层薄时,膜层抗菌性能对TiN层厚度较为敏感;而当Cu-Zn层较厚时,抗菌性能对TiN层厚度不敏感,均具有较好的抗菌性能。存在合适的多层结构,如TiN层厚度为3.3~5nm左右,Cu-Zn层厚度约为4nm时,使得膜层具有良好的抗菌性能和耐腐蚀性能。  相似文献   

14.
马妞  黄佳木  苏俊  尹凌毅 《材料导报》2018,32(16):2768-2772
为了进一步改善AZ31B镁合金的耐磨和耐蚀性能,采用微弧氧化技术且在电解液中添加质量浓度为4g/L的MgO纳米颗粒,制备了氧化物陶瓷膜。采用扫描电子显微镜观察其表面和截面形貌,采用X射线衍射仪测试微弧氧化(MAO)膜的物相组成,利用电化学工作站,盐雾试验箱测试耐腐蚀性,利用球-盘磨损实验测试耐磨性。结果表明:添加MgO纳米颗粒后,膜层孔洞的填充,膜层成分中MgO含量的增加,使腐蚀电流密度降低至4.28×10~(-9) A/cm~2;中性盐雾试验结果表明腐蚀以点蚀和裂纹的形式发生,MgO的嵌入使腐蚀点减少和内部致密层厚度增加,从而使2N荷载、干摩擦条件下样品的摩擦系数和磨损率分别减小至0.228和1.39×10~(-5) mm~3/(N·m),耐蚀性和耐磨性得到改善。  相似文献   

15.
表面纳米化对316L不锈钢性能的影响   总被引:7,自引:0,他引:7  
对316L不锈钢进行表面机械研磨处理(SMAT),研究表面组织变化对其硬度和在0.5 mol/LNaCl介质中腐蚀性能的影响.结果表明:通过SMAT可以在316L不锈钢表面制备出纳米结构层,随着处理时间的增加,表面纳米晶组织逐渐由单一的奥氏体相过渡到奥氏体与马氏体两相共存;表面纳米化和马氏体相变能够明显地提高316L不锈钢的表层硬度,使表面粗糙度略有下降;表面机械研磨处理降低了316L不锈钢在0.5mol/L NaCl腐蚀介质中的耐蚀性能.因为316L不锈钢表面纳米晶组织容易钝化,形成的钝化膜不稳定,提高了溶解速度.  相似文献   

16.
为改善304不锈钢在Cl-环境中的局部腐蚀性能,采用热丝增强等离子体非平衡磁控溅射技术,对其进行离子渗氮。利用扫描电镜、X射线衍射仪及电化学工作站,对不同渗氮时间下304不锈钢渗氮层的组织、结构及耐蚀性能进行了研究,并讨论了相关的腐蚀过程及耐蚀机制。结果表明,等离子体渗氮对304不锈钢的耐蚀性能有显著影响。经2 h渗氮后,304不锈钢的腐蚀电位从-257提高至-128 mV,阻抗模值较基体提高了3个数量级。而腐蚀电流密度则从7.94×10-7降低至5.21×10-8A/cm2,腐蚀失重从837.65 g/m2·a-1降至159.46 g/m2·a-1,不锈钢的耐蚀性能得到显著提高。然而,当渗氮时间延长至4 h时,由于多余的N原子与Fe原子相结合形成Fe3N。γN相与Fe3N相构成电偶,形成腐蚀微电池,使腐蚀电位显著降低,腐蚀电流密度和腐蚀失重明显增加,从而降低了不锈钢的耐蚀性能。在本实验中,渗氮2 h的304不锈钢在含Cl-溶液中的耐蚀性最佳。  相似文献   

17.
为分析检测316L不锈钢在电解液中钝化膜的耐腐蚀性能,采用Tafel腐蚀极化曲线、电化学阻抗谱、Mott-Schottky进行了表征。极化曲线结果表明:腐蚀电位为-0.955 V,腐蚀电流密度为10-4.02 A/cm2;电化学阻抗测试结果表明:当成膜电势为0.3 V时,该膜的耐蚀性能均优异于其他电势下形成的膜;由Mott-Schottky分析表明:钝化膜的施体密度基本随成膜电势的增加而降低,钝化膜的厚度基本随成膜电势增加而增加。同时,根据PDM分析可知该膜在该电解液下100 a内将被腐蚀至4.5 mm的深度。  相似文献   

18.
采用原子层沉积系统中自带的等离子体发生器产生N_2等离子体直接处理InP表面,系统地研究了氮化对Al_2O_3/InP金属氧化物半导体(MOS)电容界面特性及栅漏电特性的影响。实验结果表明,氮化能有效降低界面缺陷密度和边界缺陷密度,抑制InP表面自然氧化物的形成,改善界面质量,提高Al_2O_3/InP MOS电容的电学性能。氮化之后,在Al_2O_3/InP界面会形成一个约为0.8 nm厚的界面层,积累区频散由7.8%降低至3.5%,滞回由130减小至60 mV,界面缺陷密度由5×10~(12)降低至2×10~(12)cm~(-2)·eV~(-1),边界缺陷密度由9×10~(11)降低至5.85×10~(11)V~(-1)cm~(-2),栅漏电流由9×10~(-5)降低至2.5×10~(-7)A/cm~2,这些数据充分证明了采用N_2等离子体直接处理InP表面来钝化Al_2O_3/InP界面的方法是有效的。  相似文献   

19.
采用粉末冶金方法制备了多孔高氮奥氏体不锈钢并研究其力学性能和耐腐蚀性能。结果表明,高温气固渗氮能促进双相不锈钢向奥氏体不锈钢的转变,在其显微组织中出现了细条状和颗粒状CrN相析出物。随着造孔剂含量的提高孔隙率随之提高,而力学性能和耐腐蚀性能降低。与普通的多孔不锈钢相比,这种多孔高氮奥氏体不锈钢的力学性能更加优越,源于N的固溶强化和CrN等析出物的强化机制。随着孔隙率的提高多孔高氮奥氏体不锈钢的腐蚀倾向和腐蚀速率逐渐增大,造孔剂含量(质量分数)为10%的试样具有最佳的耐腐蚀性能。提高烧结温度有利于烧结块体的致密化,使腐蚀速率明显下降。  相似文献   

20.
介绍了采用深度轧制技术制备的纳米晶304不锈钢板材的力学与腐蚀性能。与普通304不锈钢相比,纳米晶304不锈钢的屈服和抗拉强度同时提高,且延伸率30%以上,拉伸性能提高。相同变幅度条件下,纳米晶304不锈钢应变疲劳的疲劳寿命和疲劳强度同时提高,抗应变疲劳性能提高。在650℃下、Na Cl-Na2SO4混合熔盐和不同浓度盐酸溶液中,纳米晶304不锈钢局部腐蚀阻力提高、腐蚀速度减少并形成致密氧化膜,耐腐蚀性能提高。从纳米晶和普通304不锈钢的价电子结构以及氧化膜电子结构的角度,分析了纳米晶304不锈钢耐腐蚀性能提高的本征因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号