首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InGaAs/GaAs/InGaP-based heterolasers with asymmetrically grown quantum wells of two types are developed. For the first time, dual-wavelength operation and second-harmonic generation are realized in these lasers over a wide range of injection currents: from 0.2 A in CW mode up to 10 A in injection with 200-ns-long pulses. Previously unknown special features of such a generation are experimentally revealed and interpreted in terms of the competition and coexistence of various short-and long-wavelength modes, including the “whispering-gallery” modes.  相似文献   

2.
A MOCVD technology for growth of InGaAs/GaAs/InGaP laser heterostructures on a modified Epiquip VP-50-RP installation was developed. Mesa stripe laser diodes with threshold current density J th=100–200 A/cm2, internal optical loss αi=1.3–1.7 cm?1, and internal quantum efficiency ηi=60–70% have been fabricated. A CW output optical power of 5 W has been obtained for a single 100-µm-wide aperture mesa stripe laser diode emitting at 1.03 µm. It is shown that use of AlGaAs waveguide layers, which increase the conduction band barrier offset, lowers the temperature sensitivity of laser heterostructures within the temperature range 10–80°C.  相似文献   

3.
A semiconductor laser with a new waveguide is developed. It allows significant narrowing of the directional pattern (to 4° in the plane perpendicular to the pn junction). In the used waveguide, the minimum excess of the effective refractive index neff of the excitation mode over the substrate refractive index ns (neffns ? 1) is provided by selecting the thickness of Al0.3Ga0.7As confinement layers, which significantly increases the waveguide mode size and leads to directional-pattern narrowing.  相似文献   

4.
5.
The performance of InGaP-based pHEMTs as a function of gate metallization is examined for Mo/Au, Ti/Au, and Pt/Au gates. DC and microwave performance of pHEMT's with 0.7-μm gate lengths is evaluated. Transconductance, threshold voltage, ft, and fmax are found to depend strongly on gate metallization. High-speed performance is achieved, with ft of 41.3 GHz and f max of 101 GHz using Mo/Au gates. The difference in performance between devices with different gate metallizations is postulated to be due to a combination of the difference in Schottky barrier heights and different gate-to-channel spacings due to penetration of the gate metal into the InGaP barrier layer  相似文献   

6.
The performance of InGaP-based pHEMTs as a function of gate length has been examined experimentally. The direct-current and microwave performance of pHEMTs with gate lengths ranging from 1.0-0.2 μm has been evaluated. Extrinsic transconductances from 341 mS/mm for 1.0 μm gate lengths to 456 mS/mm for 0.5 μm gate lengths were obtained. High-speed device operation has been verified, with ft of 93 GHz and fmax of 130 GHz for 0.2 μm gate lengths. The dependence of DC and small-signal device parameters on gate length has been examined, and scaling effects in InGaP-based pHEMT's are examined and compared to those for AlGaAs/InGaAs/GaAs pHEMTs. High-field transport in InGaP/InGaAs heterostructures is found to be similar to that of AlGaAs/InGaAs heterostructures. The lower ϵr of InGaP relative to AlGaAs is shown to be responsible for the early onset of short-channel effects in InGaP-based devices  相似文献   

7.
《Microelectronics Journal》2007,38(6-7):750-753
A novel InGaP/GaAs heterostructure-emitter bipolar transistor (HEBT) with InGaAs/GaAs superlattice-base structure is proposed and demonstrated by two-dimensional analysis. As compared with the traditional HEBT, the studied superlattice-base device exhibits a higher collector current, a higher current gain of 246, and a lower base–emitter (B–E) turn-on voltage of 0.966 V at a current level of 1 μA, attributed to the increased charge storage of minority carriers in the InGaAs/GaAs superlattice-base region by tunneling behavior. The low turn-on voltage can reduce the operating voltage and collector–emitter offset voltage for low power consumption in circuit applications.  相似文献   

8.
We report on the successful surface passivation of wide recess InGaP/InGaAs/GaAs pseudomorphic HEMTs with MBE-grown ultrathin GaS film (2 nm) employing a single precursor, tertiarybutyl-galliumsulfide-cubane ([(t-Bu)GaS]/sub 4/). At the recess length of 1.1 /spl mu/m, a GaS-passivated device with a 0.5-/spl mu/m gate length has the maximum transconductance (g/sub m max/) of 347 mS/mm, which is about 40% higher than that of 240 mS/mm for a device without GaS passivation. We found that one of the causes of an increased g/sub m max/ is the decrease of sheet resistance on the recessed surface because GaS passivation has reduced the depletion layer. Meanwhile, the two-terminal gate-to-drain reverse breakdown voltage (BV/sub gd/) was reduced after GaS passivation. The BV/sub gd/ is independent of the recess length between gate and drain (L/sub gd/) for GaS-passivated devices, unlike that for devices without GaS passivation. According to our calculation of the BV/sub gd/ involving the effects of impact ionization and the interface state, the BV/sub gd/ becomes almost independent of the L/sub gd/, when the interface state density (N/sub int/) is below 1/spl times/10/sup 12/ cm/sup -2/. Then, the calculated surface potential at the recess region is less than 0 eV. This result suggests that GaS passivation can remarkably reduce the N/sub int/ at the recess region.  相似文献   

9.
We fabricated 0.35-μm gate-length pseudomorphic HEMT DCFL circuits using a highly doped thin InGaP layer as the electron supply layer. The InGaP/InGaAs/GaAs pseudomorphic HEMT grown by MOVPE is suitable for short gate-length devices with a low supply voltage since it does not show short channel effects even for gate length down to 0.35 μm. We obtained a K value of 555 mS/Vmm and a transconductance gm of 380 mS/mm for an InGaP layer 18.5 nm thick. Fabricated 51-stage ring oscillators show the basic propagation delay of 11 ps and the power-delay product of 7.3 fJ at supply voltage of VDD of 1 V, and 13.8 ps and 3.2 fJ at VDD of 0.6 V for gates 10 μm wide  相似文献   

10.
The authors report the high-temperature and high-power operation of strained-layer InGaAs/GaAs quantum well lasers with lattice-matched InGaP cladding layers grown by gas-source molecular beam epitaxy. Self-aligned ridge waveguide lasers of 3-μm width were fabricated. These lasers have low threshold currents (7 mA for 250-μm-long cavity and 12 mA for 500-μm-long cavity), high external quantum efficiencies (0.9 mW/mA), and high peak powers (160 mW for 3-μm-wide lasers and 285 mW for 5-μm-wide laser) at room temperature under continuous wave (CW) conditions. The CW operating temperature of 185°C is the highest ever reported for InGaAs/GaAs/InGaP quantum well lasers, and is comparable to the best result (200°C) reported for InGaAs/GaAs/AlGaAs lasers  相似文献   

11.
Intrinsic phase matching between a TE and a TM mode is obtained in a GaAs/AlGaAs superlattice waveguide, fabricated by Zn diffusion induced disordering, as a result of the birefringent waveguiding properties of the superlattice in combination with a proper choice of the waveguide geometry. As a consequence, up to 90% polarisation conversion is demonstrated without the application of phase matching techniques.<>  相似文献   

12.
A new field-effect transistor using a high-barrier n+ -GaAs/p+-InGaP/n-GaAs camel-like gate and GaAs/InGaAs heterostructure-channel has been fabricated successfully and demonstrated. Experimentally, an ultra high gate-drain breakdown voltage of 52 V, a high drain-source operation voltage over 20 V with low leakage currents, and a high drain-source off-state breakdown voltage of 39.7 V are obtained for a 1×100 μm2 device. The high breakdown behavior is attributed to the use of high barrier camel-like gate and heterostructure channels to reduce the undesired leakage current. Furthermore, the studied device also shows high breakdown behavior in a high temperature environment and good microwave characteristics. Therefore, based on these characteristics, the studied device is suitable for high-breakdown, low-leakage, and high-temperature applications  相似文献   

13.
报道了一种以InGaAs为基区的新结构InGaP/InGaAs/GaAs双异质结晶体管,获得了直流性能良好的器件.其共射直流增益β达到100,残余电压Voffset约为0.4V,膝点电压Vknee约为1V,击穿电压BVceo超过10V,器件的基极和集电极电流理想因子分别为nb=1.16,nc=1.11,可应用于低功耗、高功率领域.  相似文献   

14.
报道了一种以InGaAs为基区的新结构InGaP/InGaAs/GaAs双异质结晶体管,获得了直流性能良好的器件.其共射直流增益β达到100,残余电压Voffset约为0.4V,膝点电压Vknee约为1V,击穿电压BVceo超过10V,器件的基极和集电极电流理想因子分别为nb=1.16,nc=1.11,可应用于低功耗、高功率领域.  相似文献   

15.
The author reports a novel InGaP/InGaAs/GaAs double delta-doped pseudomorphic high-electron mobility transistor (pHEMT) with n/sup +/-GaAs/p/sup +/-InGaP/n-InGaP camel-like gate structure grown by MOCVD. Due to the p-n depletion from the p/sup +/-InGaP gate to the channel region and the presence of /spl Delta/Ec at the InGaP/InGaAs heterostructure, the turn-on voltage of gate is larger than 1.7 V. For a 1/spl times/100-/spl mu/m/sup 2/ device, the experimental results show an extrinsic transconductance of 107 mS/mm and a saturation current density of 850 mA/mm. Significantly, an extremely broad gate voltage swing larger than 6 V with above 80% maximum g/sub m/ is obtained. Furthermore, the unit current cut-off frequency f/sub T/ and maximum oscillation frequency are up to 20 and 32 GHz, respectively. The excellent device performance provides a promise for linear and large signal amplifiers and high-frequency circuit applications.  相似文献   

16.
In0.5Al0.5As/In0.5Ga0.5 As HEMTs have been grown metamorphically on GaAs substrates oriented 6° off (100) toward (111)A using a graded InAlAs buffer. The devices are enhancement mode and show good dc and RF performance. The 0.6-μm gate length devices have saturation currents of 262 mA/mm at a gate bias of 0.7 V and a peak transconductance of 647 mS/mm. The 0.6 μm×3 mm devices tested on-wafer have output powers up to 30 mW/mm and 46% power-added-efficiency (PAE) at 1 V drain bias and 850 MHz. When biased and matched for best efficiency performance, this same device has up to 68% PAE at Vd=1 V  相似文献   

17.
InGaP/InGaAs metal–oxide–semiconductor (MOS) pseudomorphic high-electron-mobility transistor (PHEMT) with a nanoscale liquid phase-oxidized InGaP as the gate dielectric is demonstrated. Not only does the MOS-PHEMT have the advantages of the MOS structure, but it also has high-carrier density and a high-mobility 2DEG channel. Using selective oxidation of InGaP by liquid phase oxidation, the MOS-PHEMT can be fabricated without additional recess processes. The MOS-PHEMT exhibits larger transconductance, lower gate leakage current, higher breakdown voltage, higher cut-off frequency, lower minimum noise figure, and higher power-added efficiency than does its counterpart (reference PHEMT). The interface roughness effect on the DC and RF performance of devices is also discussed.  相似文献   

18.
An enhancement-mode pseudomorphic high electron mobility transistor (E-mode pHEMT) with In0.49Ga0.51P/In0.25Ga0.75As/GaAs structure is studied in this paper. The two-dimensional device simulator, MEDICI, is used to solve the Poisson's equation and the electron/hole current continuity equations. An optimized δ-doped InGaP/InGaAs pHEMT structure is found to be superior to the conventional AlGaAs/InGaAs pHEMT. It reveals that the maximum drain-source current (IDS) goes up to 1600 mA/mm and transconductance (Gm) is 2120 mS/mm.  相似文献   

19.
Arrays of strained nanoscale InP islands in an In0.49Ga0.51P host on a GaAs(100) substrate and InAs islands in a In0.53Ga0.47As host on an InP(100) substrate are obtained by metalorganic vapor-phase epitaxy (MOVPE). Their structural and photoluminescence properties are investigated. It is shown that the nanoscale islands that are formed measure 80 nm (InP/InGaP) and 25–60 nm (InAs/InGaAs). The photoluminescence spectra of the nanoscale islands display bands in the wavelength ranges 0.66–0.72 and 1.66–1.91 μm at 77 K with maxima whose position does not vary as the effective thickness of InP and InAs increases. The radiation efficiency of the nanoscale InP islands is two orders of magnitude greater than the luminescence intensity of the InAs islands. Fiz. Tekh. Poluprovodn. 33, 858–862 (July 1999)  相似文献   

20.
设计并生长了一种新的InGaP/GaAs/InGaP DHBT结构材料,采用在基区和集电区之间插入n+-InGaP插入层结构,以解决InGaP/GaAs/InGaP DHBT集电结导带尖峰的电子阻挡效应问题。采用气态源分子束外延(GSMBE)技术,通过优化生长条件,获得了高质量外延材料,成功地生长出带有n+-InGaP插入层结构的GaAs基InGaP/GaAs/InGaP DHBT结构材料。采用常规的湿法腐蚀工艺,研制出发射极面积为100μm×100μm的新型结构InGaP/GaAs/InGaP DHBT器件。直流特性测试的结果表明,所设计的集电结带有n+-InGaP插入层的InGaP/GaAs/InGaP DHBT器件开启电压约为0.15V,反向击穿电压达到16V,与传统的单异质结InGaP/GaAs HBT相比,反向击穿电压提高了一倍,能够满足低损耗、较高功率器件与电路制作的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号