首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe the achievements and pitfalls encounteredin doing structure predictions of protein mutants using moleculardynamics simulation techniques in which properties of atomsare slowly changed as a function of time. Basically the methodconsists of a thermodynamic integration (slow growth) calculationused for free energy determination, but aimed at structure prediction;this allows for a fast determination of the mutant structure.We compared the calculated structure of the mutants Met222Ala,Met222Phe and Met222Gln of subtilisin BPN' with the respectiveX-ray structures and found good agreement between predictedand X-ray structure. The conformation of the residue subjectto the mutation is relatively easy to predict and is mainlydetermined by packing criteria. When the side chain has polargroups its exact orientation may pose problems; long-range Coulombinteractions may generate a polarization feedback involvingsystem relaxation times beyond the simulation time. Changesinduced in the environment are harder to predict using thismethod. In particular, rearrangement of the hydration structurewas difficult to predict correctly, probably because of thelong relaxation times. In all conversions made the changes observedin the environment were found to be history-dependent and inparticular the hydrogen bonding patterns provided evidence formetastable substates. In all cases the structure predicted wascompared with available kinetic data and the reduced activitycould be explained in terms of changes in the configurationof the active site.  相似文献   

2.
The protein Streptomyces subtilisin inhibitor, SSI, efficientlyinhibits a bacterial serine protease, subtilisin BPN'. We recentlydemonstrated that functional change in SSI was possible simplyby replacing the amino acid residue at the reactive P1 site(methionine 73) of SSI. The present paper reports the additionaleffect of replacing methionine 70 at the P4 site of SSI(Lys73)on inhibitory activity toward two types of serine proteases,trypsin (or lysyl endopeptidase) and subtilisin BPN'. Conversionof methionine 70 at the P4 site of SSI(Lys73) to glycine oralanine resulted in increased inhibitory activity toward trypsinand lysyl endopeptidase, while replacement with phenylalanineweakened the inhibitory activity toward trypsin. This suggeststhat steric hindrance at the P4 site of SSI(Lys73) is an obstaclefor its binding with trypsin. In contrast, the same P4 replacementshad hardly any effect on inhibitory activity toward subtilisinBPN'. Thus the subsite structure of subtilisin BPN' is tolerantto these replacements. This contrast in the effect of P4 substitutionmight be due to the differences in the S4 subsite structuresbetween the trypsin-like and the subtilisin-like proteases.These findings demonstrate the importance of considering structuralcomplementarity, not only at the main reactive site but alsoat subsites of a protease, when designing stronger inhibitors.  相似文献   

3.
Unlike trypsin-like serine proteases having only one conspicuousbinding pocket in the active site, subtilisin BPN' has two suchpockets, the S1 and S4 pockets, which accommodate the P1 andP4 residues of ligands (after Schechter and Berger notation)respectively. Using computer graphics, the geometrical natureof the two pockets was carefully examined and strategies forsite-directed mutagenesis studies were set up against a proteinSSI (Streptomyces subtilisin inhibitor), which is a strong proteinaceousinhibitor (or a substrate analogue) of subtilisin BPN'. It wasdecided to convert the P1 residue, methionine 73, into lysine(M73K) with or without additional conversion of the P4 residue,methionine 70, into glycine (M70G). The crystal structures ofthe two complexes of subtilisin BPN', one with the single mutantSSI (M73K) and the other with the double mutant SSI (M73K, M70G)were solved showing that (i) small ‘electrostatic induced-fitmovement’ occurs in the S1 pocket upon introducing theterminal plus charge of the lysine side chain, and (ii) large‘mechanical induced-fit movement’ occurs in theS4 pocket upon reducing the size of the P4 side chain from methionineto glycine. In both (i) and (ii), the induced-fit movement occurredin a concerted fashion involving both the enzyme and ‘substrate’amino acid residues. The term ‘substrate-assisted stabilization’was coined to stress the cooperative nature of the induced-fitmovements.  相似文献   

4.
Using enzyme prepared by the DNA recombination technique, subtilisinE from Bacillus subtilis was crystallizedin space group P212121with two molecules in an asymmetric unit. The crystal structureof PMSF-inhibited subtilisin E was solved by molecular replacementfollowed by refinement with the X-PLOR program. This resultedin the 2.0 Å structure of subtilisin E with an R-factorof 0.191 for 8–2 Å data and r.m.s. deviations fromideal values of 0.021 Å and 2.294° for bond lengthsand bond angles respectively. The PMSF group covalently boundto Ser221 appeared very clearly in the electron density map.Except for the active site disturbed by PMSF binding, the structuralfeatures of subtilisin E are almost the same as in other subtilisins.The calcium-binding sites are different in detail in the twoindependent molecules of subtilisin E. Based on the structure,the remarkably enhanced heat stability of mutant N118S of subtilisinE is discussed. It is very likely that there is an additionalwater molecule in the mutant structure, which is hydrogen bondedto side chains of Serll8 and its neighbouring residues Lys27and Asp 120.  相似文献   

5.
Variants designed using PROTEUS have been produced in an attemptto engineer stabilizing salt bridges into subtilisin BPN'. Allthe mutants constructed by site-directed mutagenesis were secretedby Bacillus subtillus, except L75K. Q19E, expressed as a singlevariant and also in a double variant, Q19E/Q271E, appears toform a stabilizing salt bridge based on X-ray crystal structuredetermination and differential scanning calorimeter measurements.Although the double mutant was found to be less thermodynamicallystable than the wild-type, it did exhibit an autolytic stabilityabout two fold greater under hydrophobic conditions. Four variants,A98K, S89E, V26R and L235R, were found to be nearly identicalto wild-type in thermal stability, indicative of stable structureswithout evidence of salt bridge formation. Variants Q271E, V51Kand T164R led to structures that resulted in varying degreesof thermodynamic and autolytic instability. A computer-modelinganalysis of the PROTEUS predictions reveals that the low percentageof salt bridge formation is probably due to an overly simplisticelectrostatic model, which does not account for the geometryof the pairwise interactions.  相似文献   

6.
The Streptomyces subtilisin inhibitor (SSI) is a proteinaceousprotease inhibitor which inhibits serine proteases by forminga stable Michaelis complex. The flexible loop region (Thr64–Val69)is a very flexible region in an SSI molecule and its importancein interactions with proteases has been suggested, since conformationalchange of this loop was found to occur for the smooth bindingof SSI with various proteases. In this study, mutated SSIs lackingone or two residues in this region were generated and the effectsof deletions on the interaction with proteases were investigated.Deletion was introduced into mutated SSI(Lys73) and SSI(Gly70Lys73)both known to be trypsin inhibitors, to examine the effectsof deletion on interactions with subtilisin BPN' or trypsin.The deletion of one residue (Gly66) caused increased inhibitoryactivity toward trypsin, indicating the protruding flexibleloop hinders binding with trypsin. Reduction of such hindranceby one-residue shortening in this loop is shown to be effectivefor the interaction of SSI(Lys73) with trypsin. In contrast,one-residue shortening had virtually no effect on inhibitiontoward subtilisin BPN'. Differences in the subsite structuresof these proteases may have been the reason for this contrast.The deletion of two residues (Thr64 and Gly66) in this regionconverted SSI into a temporary inhibitor. Structural analysisof the degradation intermediate showed that the peptide bondat the reactive site of doubly deleted SSI was cleaved by subtilisinBPN' after its binding with protease. Thus, the irreversibilityof the cleaved peptide bond at the reactive site of mutatedSSI in the complex with protease may possibly be the cause forits temporary inhibition. Irregular conformation around thereactive site caused by the deletion of two residues in theflexible loop would convert SSI into a temporary inhibitor.Thus, moderate flexibility in the flexible loop region may possiblybe a structural requirement for SSI to function.  相似文献   

7.
We have been interested for some time in establishing a strategyfor deriving lead compounds from macromolecule ligands suchas minibody variants. A minibody is a minimized antibody variabledomain whose two loops are amenable to combinatorial mutagenesis.This approach can be especially useful when dealing with `difficult'targets. One such target is the NS3 protease of hepatitis Cvirus (HCV), a human pathogen that is believed to infect about100 million individuals worldwide and for which an effectivetherapy is not yet available. Based on known inhibitor specificity(residues P6-P1) of NS3 protease, we screened a number of minibodiesfrom our collection and we were able to identify a competitiveinhibitor of this enzyme. We thus validated an aspect of recognitionby HCV NS3 protease, namely that an acid anchor is necessaryfor inhibitor activity. In addition, the characterization ofthe minibody inhibitor led to the synthesis of a constrainedhexapeptide mimicking the bioactive loop of the parent macromolecule.The cyclic peptide is a lead compound prone to rapid optimizationthrough solid phase combinatorial chemistry. We therefore confirmedthat the potential of turning a protein ligand into a low molecularweight active compound for lead discovery is achievable andcan complement more traditional drug discovery approaches.  相似文献   

8.
A procedure is described for automating labour-intensive stepsof the ‘hanging drop’ protein crystallization method.An automatic sample changer is employed to fill the wells ina multi-well plate so that concentration gradients in variouscomponents are obtained. The sample changer is also used forpreparing droplets on a second multi-well plate. Subse quently,this second plate is manually turned around and placed on topof the first multi-well plate such that a large number of chamberswith different conditions is obtained simultaneously. Duringinitial trials a new crystal form of a subtilisin:eglin complexwas obtained. The crystals have space group P21 contain twoenzyme inhibitor complexes per asymmetric unit and diffractbeyond 2.2 Å.  相似文献   

9.
Oligonucleotide-directed mutagenesis has been used to replaceglycine residues by alanine in neutral protease from Bacillussubtilis. One Gly to Ala substitution (G147A) was located ina helical region of the protein, while the other (G189A) wasin a loop. The effects of mutational substitutions on the functional,conformational and stability properties of the enzyme have beeninvestigated using enzymatic assays and spectroscopic measurements.Single substitutions of both G1y147 and Gly189 with Ala residuesaffect the enzyme kinetic properties using synthetic peptidesas substrates. When Gly replacements were concurrently introducedat both positions, the kinetic characteristics of the doublemutant were roughly intermediate between those of the two singlemutants, and similar to those of the wild-type protease. Bothmutants G147A and G189A were found to be more stable towardsirreversible thermal inactivation/unfolding than the wild-typespecies. Moreover, the stabilizing effect of the Gly to Alasubstitution was roughly additive in the double mutant G147A/G189A,which shows a 3.2°C increase in Tm with respect to the wild-typeprotein. These findings indicate that the Gly to Ala substitutioncan be used as a strategy to stabilize globular proteins. Thepossible mechanisms of protein stabilization are also discussed.  相似文献   

10.
A 10 residue ß-hairpin, which is characteristic ofthermostable Bacillus neutral proteases, was engineered intothe thermolabile neutral protease of Bacillus subtilis. Therecipient enzyme remained fully active after introduction ofthe loop. However, the mutant protein exhibited autocatalyticnicking and a 0.4°C decrease in thermostability. Two additionalpoint mutations designed to improve the interactions betweenthe enzyme surface and the introduced ß-hairpin resultedin reduced nicking and increased thermostability. After theintroduction of both additional mutations in the loopcontainingmutant, nicking was largely prevented and an increase in thermostabilityof 1.1°C was achieved.  相似文献   

11.
We used directed evolution to convert Bacillus subtilis subtilisinE into an enzyme functionally equivalent to its thermophilichomolog thermitase from Thermoactinomyces vulgaris. Five generationsof random mutagenesis, recombination and screening created subtilisinE 5-3H5, whose half-life at 83°C (3.5 min) and temperatureoptimum for activity (Topt, 76°C) are identical with thoseof thermitase. The Topt of the evolved enzyme is 17°C higherand its half-life at 65°C is >200 times that of wild-typesubtilisin E. In addition, 5-3H5 is more active towards thehydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-typeat all temperatures from 10 to 90°C. Thermitase differsfrom subtilisin E at 157 amino acid positions. However, onlyeight amino acid substitutions were sufficient to convert subtilisinE into an enzyme equally thermostable. The eight substitutions,which include known stabilizing mutations (N218S, N76D) andalso several not previously reported, are distributed over thesurface of the enzyme. Only two (N218S, N181D) are found inthermitase. Directed evolution provides a powerful tool to unveilmechanisms of thermal adaptation and is an effective and efficientapproach to increasing thermostability without compromisingenzyme activity.  相似文献   

12.
BM 06.022 is a t-PA deletion variant which comprises the kringle2 and the protease domain. Production of BM 06.022 in Escherichiacoli leads to the formation of inactive inclusion bodies, whichhave to be refolded by an in vitro refolding process to achieveactivity and proper structure of the domains. We analysed thebiochemical properties of BM 06.022 to obtain some informationabout the structure of kringle 2 and the protease as comparedwith the structure of these domains in the intact t-PA molecule.The kinetic analysis of the amidolytic activity of BM 06.022and CHO-t-PA yielded similar values for kcat (13.9 s-1and 11.4s-1for the single chain forms and 33.9 s-1and 27.1 s-1for thetwo chain forms of BM 06.022 and CHO-t-PA, respectively) andfor km, (2.5 mM and 2.1 mM for the single chain forms and 0.5mM and 0.3 mM for the two chain forms of BM 06.022 and CHO-t-PA,respectively). BM 06.022 and CHO-t-PA have the same plasminogenolyticactivity in the absence of CNBr fragments of fibrinogen. However,BM 06.022 has a lower plasminogenolytic activity in the presenceof CNBr fragments of fibrinogen and a lower affinity to fibrinas compared with CHO-t-PA. The affinity of BM 06.022 for fibrinis completely suppressed by 0.3 mM eaminocaproic acid, whilethe intact t-PA has a residual affinity of 30%. The dissociationconstants for the interaction with the lysine analogue e-aminocaprokacid are 0.10 mM and 0.09 mM for BM 06.022 and the intact t-PA,respectively. Furthermore, BM 06.022 and CHO-t-PA are inhibitedby PAI-1 in a similar manner  相似文献   

13.
We previously demonstrated that Pleurotus ostreatus proteinase A inhibitor 1 (POIA1) could function as an intramolecular chaperone of subtilisin BPN', as in the case of the propeptide of subtilisin BPN', and that its Phe44 --> Ala mutant, which lost its tertiary structure, could not assist the refolding of subtilisin BPN'. In this study, we examined the effects of hydrophobic amino acid substitutions at other sites and substitutions of Phe44 with other hydrophobic residues on the structure and functions of POIA1. These mutations were introduced into POIA1cm that had been obtained by the substitution of the C-terminal six residues of POIA1 with those of the propeptide of subtilisin BPN'. When Ile32 or Ile64 was substituted with Ala, the tertiary structure of the resultant mutant was markedly destroyed, and the activities as a protease inhibitor and an intramolecular chaperone were significantly lowered. Among the position 44 mutants, the Phe44 --> Val mutant was a much less effective intramolecular chaperone with conversion to a digestible inhibitor, possibly owing to destruction of the tertiary structure. On the other hand, the Phe44 --> Leu or Ile mutant maintained its tertiary structure, and hence could function as a more effective intramolecular chaperone than the Phe44 --> Val mutant. Furthermore, since the Phe44 --> Leu mutant was a more susceptible inhibitor than POIA1cm, the halo formed around a colony of Bacillus cells transformed with a plasmid encoding this mutant was larger than others. These results clearly show the close relationship between the tertiary structure and functions of POIA1 as a protease inhibitor and an intramolecular chaperone, and that a combination of such inhibitory properties and intramolecular chaperone activity of POIA1 might affect the diameter of the halo formed around Bacillus colonies in vivo.  相似文献   

14.
Sequential rounds of error-prone PCR to introduce random mutationsand screenrng of the resultant mutant libraries have been usedto enhance the total catalytic activity of subtilisin E significantlyin a non-natural environment, aqueous dimethylformamide (DMF).Seven DNA substitutions coding for three new amino acid substitutionswere identified in a mutant isolated after two additional generationsof directed evolution carried out on 10M subtilisin E, previously‘evolved’ to increase its specific activity in DMF.A Bacillus subtilis-Escherichia coli shuttle vector was developedin order to increase the size of the mutant library that couldbe established in B.subtilis and the stringency of the screeningprocess was increased to reflect total as well as specific activity.This directed evolution approach has been extremely effectivefor improving enzyme activity in a non-natural environment:the resulting-evolved 13M subtilisin exhibits specific catalyticefficiency towards the hydrolysis of a peptide substrate succlnyl-Ala-Ala-Pro-Phe-p-nitroanilidein 60% DMF solution that is three times that of the parent 10Mand 471 times that of wild type subtilisin E. The total activityof the 13M culture supernatant is enhanced 16-fold over thatof the parent 10M.  相似文献   

15.
In this paper we present for seven subtilisin structures a systematiccomparison of densely packed side-group clusters (defined asan ensemble of side chains with extensive internal atomic contactsas compared with those made with the surrounding protein environmentand measured relative to the maximum possible for each residuetype). Spatially consistent clusters are observed at structurallyequivalent positions in the proteins, as revealed by carefulmultiple superpositioning of the respective backbone atoms.The clusters are positioned at strategic loop-connecting sitesnear the protein surfaces. The residues within consistent clustersdisplaying extensive association show varying conservation atstructurally equivalent alignment sites. Suggestions for residuesubstitutions, as observed over the seven tertiary structures,were taken from the cluster positions and were shown to be consistentwith a number of point mutations in one of the seven structures(savinase) that result in increased thermal stability.  相似文献   

16.
Serine endoproteases such as trypsins and subtilisins are knownto have an extended substrate binding region that interactswith residues P6 to P3' of a substrate. In order to investigatethe structural and functional effects of replacing residuesat the S4 substrate binding pocket, the serine protease fromthe alkalophilic Bacillus strain PB92, which shows homologywith the subtilisins, was mutated at positions 102 and 126–128.Substitution of Val102 by Trp results in a 12–fold increasein activity towards succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide(sAAPFpNA). An X-ray structure analysis of the V102W mutantshows that the Trp side chain occupies a hydrophobic pocketat the surface of the molecule leaving a narrow crevice forthe P4 residue of a substrate. Better binding of sAAPFpNA bythe mutant compared with the wild type protein as indicatedby the kinetic data might be due to the hydrophobic interactionof Ala P4 of the substrate with the introduced Trp102 side chain.The observed difference in binding of sAAPFpNA by protease PB92and thermitase, both of which possess a Trp at position 102,is probably related to the amino acid substitutions at positions105 and 126 (in the protease PB92 numbering).Kinetic data forthe variants obtained by random mutation of residues Serl26,Prol27 and Serl28 reveal that the activity towards sAAPFpNAincreases when a hydrophobic residue is introduced at position126. An X-ray diffraction analysis was carried out for the threeprotease PB92 mutants which have residues Serl26-Prol27-Serl28replaced by Met-Ala-Gly(‘MAG’ mutant), Phe-Gln-Ser(‘FQS’ mutant) and Asn-Ser-Ala (‘NSA’mutant). Met 126 and Phel26 in the crystal structures of thecorresponding mutants are fixed in the same hydrophobic environmentas Trp102 in the V102W mutant.In contrast, Asnl26 in the ‘NSA’mutant is completely disordered in both crystal forms for whichthe structure has been determined. According to our kineticmeasurements none of the mutants with Met, Phe, Leu or Val atposition 126 binds sAAPFpNA better than the wild type enzyme.Resultsof the site-directed mutagenesis at position 127 imply thatpossible interaction of this residue with a substrate has almostno effect on activity towards sAAPFpNA and casein.  相似文献   

17.
We purified and characterized the aminopeptidase P from Streptomyces costaricanus TH-4 (thAPP). This enzyme has a tetramer structure, a metal-ion preference toward Zn, broad substrate specificity and a narrow pH dependency for activity. The primary structure of thAPP, respectively, exhibits 91% and 65% identity with those of two other APPs-APP I and APP II-from Streptomyces lividans (slAPP I and slAPP II). We next overexpressed the genes encoding thAPP and slAPP II in Escherichia coli and characterized them. Two differences were apparent in their properties: slAPP II formed a dimer, whereas thAPP formed a tetramer; also, the alkaline side pKa for the catalytic action of slAPP II is higher than that of thAPP. Investigation using chimeras of both enzymes revealed that the N-terminal domain is associated with the determination of pKa values for catalytic action and quaternary structure.  相似文献   

18.
Developing enzymes that are functional in highly concentratedhalocarbon solutions, such as carbon tetrachloride, may proveuseful in the development of new strategies for environmentalremediation and monitoring of pollutant plumes, as well as indeveloping ‘green’ processes. Doing so will requiregaining an understanding of the underlying structural and dynamiceffects on enzymes induced by such solvents. Herein we reporta 714 ps molecular dynamics simulation of the enzyme subtilisinCarlsberg and its waters of crystallization in a periodic boxof carbon tetrachloride. The crystal structure from aqueoussolution was used as the starting structure for our simulationusing the AMBER program and forcefield. The calculated time-averagedstructure is similar to the aqueous X-ray structure except forsignificant differences in loop (or turn) regions, resultingin many extraintra-protein hydrogen bonding interactions.Sincecarbon tetrachloride is a non-polar solvent and cannot interactstronglywith the protein and water molecules, the water moleculesstay very close to the protein surface throughout the simulation.The mobility of most of the waters was therefore very low. Afew water molecules underwent significant lateral motion duringthe simulation, but never wandered far from the protein surface.Waters were either hydrogen bonded to protein polar groups,other water and/or counterfoils. Some of the surface watersparticipated in the formation of water-mediatedhydrogen bondingnetworks. The increase in total number of intra-protein hydrogenbonds and the formation of water-mediated hydrogen bonding networksin carbon tetrachloride is consistent with the generally observedincrease in thermo-stability and reduced flexibility of proteinsin non-aqueous solutions. Several possible carbon tetrachloridebinding sites on the protein surface are predicted.  相似文献   

19.
To explore the role of residues being close to the catalytic aspartates in the higher pH optimum and in the lower dimer stability of human foamy virus (HFV) protease (PR) in comparison with human immunodeficiency virus type 1 (HIV-1) protease, single (Q8R, H22L, S25T, T28D) and double (Q8R-T28D, H22L-T28D) mutants were created based on sequence alignments and on the molecular model of HFV PR. The wild-type and mutant enzymes were expressed in fusion with maltose binding protein in Escherichia coli and the fusion proteins were purified by affinity chromatography. Specificity constant of most mutants was lower, but the value of Q8R-T28D double mutant enzyme was higher than that of the wild-type HFV PR. Furthermore, urea denaturation at two pH values and pH optimum values showed an increased stability and pH optimum for most mutants. These results suggest that the mutated residues may not be responsible for the higher pH optimum of HFV PR, but they may contribute to the lower dimer stability as compared with that of HIV-1 PR.  相似文献   

20.
A model is presented for the 3-D structure of the catalyticdomain of the putative leader peptidase NisP of Lactococcuslactis, and the interaction with its specific substrate, theprecursor of the lantibiotic nisin. This homology model is basedon the crystal structures of subtilisin BPN' and thermitasein complex with the inhibitor eglin. Predictions are made ofthe general protein fold, inserted loops, Ca2+ binding sites,aromatic interactions and electrostatic interactions of NisP.Cleavage of the leader peptide from precursor nisin by NisPis the last step in maturation of nisin. A detailed predictionof the substrate binding site attempts to explain the basisof specificity of NisP for precursor nisin. Specific acidicresidues in the SI subsite of the substrate binding region ofNisP appear to be of particular importance for electrostaticinteraction with the PI Arg residue of precursor nisin afterwhich cleavage occurs. The hydrophobic S4 subsite of NisP mayalso contribute to substrate binding as it does in subtilisins.Predictions of enzyme-substrate interaction were tested by proteinengineering of precursor nisin and determining susceptibilityof mutant precursors to cleavage by NisP. An unusual propertyof NisP predicted from this catalytic domain model is a surfacepatch near the substrate binding region which is extremely richin aromatic residues. It may be involved in binding to the cellmembrane or to hydrophobic membrane proteins, or it may serveas the recognition and binding region for the modified, hydrophobicC-terminal segment of precursor nisin. Similar predictions forthe tertiary structure and substrate binding are made for thehighly homologous protein EpiP, the putative leader peptidasefor the lantibiotic epidermin from Staphylococcus epidermidis,but EpiP lacks the aromatic patch. Based on these models, proteinengineering can be employed not only to test the predicted enzyme-substrateinteractions, but also to design lantibiotic leader peptidaseswith a desired specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号