首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report high-performance top-gated organic field-effect transistors (OFETs) with regio-regular poly(3-hexylthiophene) (rr-P3HT). The high charge carrier mobility in rr-P3HT FETs (0.4 cm2/Vs) was achieved due to the relatively low contact resistance and high crystallinity of rr-P3HT films. The contact resistance was controlled mainly through the use of high work-function platinum (Pt) (5.6 eV) for the charge injection electrode and a top-gate, bottom-contact geometry that enabled an enhanced current injection via current crowding in the staggered device structure. Moreover, the top-gate configuration provided improved device stability in air ambient conditions via the presence of a gate dielectric and gate electrode on top of the organic semiconductor.  相似文献   

2.
The electroplating of the gate electrode on a flexible polyimide (PI) substrate was successfully applied to the fabrication of inverted-staggered poly(3-hexylthiophene) (P3HT) organic thin film transistors (OTFTs). The Ni gate electrode was electroplated through patterned negative photo-resist (KMPR) masks onto Cu (seed)/Cr (adhesion) layers that had been sputter-deposited on O2-plasma-treated PI substrates. The electrical measurements of the fabricated OTFTs with the SiO2 gate insulator indicated non-ideal output characteristics, which are similar to the model of electrical transport by a space-charge limited current (SCLC). The use of a poly(4-vinyl phenol) (PVP) and SiO2/PVP bilayer gate dielectric produced output characteristics that were closer to the ideal TFT behavior but led to a lower effective mobility and on/off current (Ion/Ioff).  相似文献   

3.
Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×10?4 cm2/Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.  相似文献   

4.
5.
This paper reports our investigation of different source/drain (S/D) electrode materials in thin-film transistors (TFTs) based on an indium-gallium-zinc oxide (IGZO) semiconductor. Transfer length, contact resistance, channel conductance, and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with intrinsic field-effect mobility (μFE-i) of 10.0 cm2/Vs.  相似文献   

6.
The electrical properties of organic field-effect transistors (OFETs) are largely determined by the accumulation layer that extends only a few molecular layers away from the gate dielectric/organic semiconductor interface. To understand degradation processes that occur within the device structure under ambient conditions, it is thus essential to probe the interface using an architecture that minimizes the effects of bulk transport of contaminating species through upper layers of material in a thick film device. Using FETs designed with multiple voltage probes along the conducting channel and an ultrathin film of the active material, we found that the charge carrier density and the FET mobility decrease, and further, the contact and channel properties are strongly correlated. FET devices prepared with an ultrathin film of P3HT become significantly contact limited in air due to a hole diffusion barrier near the drain electrode. Encapsulation of the device with a layered organic/inorganic barrier material consisting of parylene and Al(2)O(3) appreciably retarded diffusion of molecular species from ambient air into P3HT.  相似文献   

7.
This study reports the synthesis of regioregular poly(3-hexylthiophene)-b-poly(1H,1H-dihydro perfluorooctyl methacrylate) (P3HT-b-PFOMA) block copolymers by atom transfer radical polymerization of FOMA using P3HT macroinitiators. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT The block copolymers were characterized by 1H-NMR, 13C-NMR, GPC, DSC, TGA and TEM. The block copolymers are able to self-assemble into phase separated micellar thin film morphology from chloroform.  相似文献   

8.
A simple approach to study the effect of processing on the charge carrier mobility in an organic field effect transistor (OFET) based on regioregular poly(3-hexylthiophene) (RR P3HT) is investigated in this paper. It is found that different processing conditions can induce different degrees of hysteresis, which is well correlated with the charge mobility where lower hysteresis represents higher stability and hence higher charge mobility. Solvent annealing tends to create large nano-scale pinholes in P3HT which degrade the mobility.  相似文献   

9.
Abstract

Poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) were prepared by a reprecipitation method. Hydrothermal processing applied external pressure to the pristine P3HT NPs at temperatures ranging from 60 to 150 °C. Optical absorption and photoluminescence (PL) spectra for the hydrothermally treated P3HT NPs varied markedly with the processing temperature. With increasing treatment temperature, the absorption peak broadened and the peak position shifted from 510 to 623 nm; moreover, the intensity ratio of the 0–1 to 0–0 emission varied. These changes were caused by interactions between the P3HT main chains and alkyl side groups and conformational modifications induced by the high pressure during the hydrothermal process. The evolution of the optical absorption spectra of the P3HT NPs during the hydrothermal processing was strongly correlated with the variation of PL excitation spectra and with the PL emission spectra of a single NP.  相似文献   

10.
Poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) were prepared by a reprecipitation method. Hydrothermal processing applied external pressure to the pristine P3HT NPs at temperatures ranging from 60 to 150 °C. Optical absorption and photoluminescence (PL) spectra for the hydrothermally treated P3HT NPs varied markedly with the processing temperature. With increasing treatment temperature, the absorption peak broadened and the peak position shifted from 510 to 623 nm; moreover, the intensity ratio of the 0–1 to 0–0 emission varied. These changes were caused by interactions between the P3HT main chains and alkyl side groups and conformational modifications induced by the high pressure during the hydrothermal process. The evolution of the optical absorption spectra of the P3HT NPs during the hydrothermal processing was strongly correlated with the variation of PL excitation spectra and with the PL emission spectra of a single NP.  相似文献   

11.
聚3-己基噻吩的光电性能研究   总被引:4,自引:0,他引:4  
利用光电化学方法研究了聚3-己基噻吩的光电化学性质,其禁带宽度为1.89eV,同时确定了它的价带位置(-3.6eV)、导带位置(-5.4eV).研究发现聚3-己基噻吩属于直接跃迁型半导体,在本文条件下得到的最高IPCE值达5.2%  相似文献   

12.
Two-dimensional X-ray diffraction was employed, to provide a complete understanding of the energy efficiency improvement of organic photovoltaics by AC electric field alignment. Two distinguishable poly (3-hexylthiophene) (P3HT) nanostructures were found in the form of two separated layers, one of which is highly oriented and the other randomly distributed. The finding helps to analyze the crystallite arrangements not only in the interface in the bulk heterojunction, but also those closer to the substrate. The highly oriented P3HT layer, although located near the substrate, was found to enhance the device efficiency, by increasing the short circuit current and decreasing the series resistance.  相似文献   

13.
The attenuated total reflection (ATR) and emission light properties utilizing surface plasmon (SP) excitations were measured for the electrochemical change of poly(3-hexylthiophene-2,5diyl) (P3HT) thin films in-situ. The SP emission light could detect the SP excited by molecular luminescence of P3HT. The ATR and SP emission light properties were observed for the doped–dedoped states of P3HT thin film. The ATR and SP emission light properties were remarkably changed with the electrochemical doping and dedoping. The SP emission light also decreased by decrease of the molecular luminescence of P3HT by doping. For the dedoped-state P3HT thin film, SP emission light also increased by increase of the molecular luminescence. The SP emission light excited by molecular luminescence can be controlled by the control of doping–dedoping state.  相似文献   

14.
15.
To enhance the carrier mobility of all-inkjet-printed organic thin film transistors, we fabricated devices that incorporated poly(3-hexylthiophene) (P3HT) and carbon nanoparticles (CNPs). The fabricated devices had an on/off ratio of 104, which is one order less than that of pristine organic thin-film transistors (OTFTs). The maximum carrier mobility as high as 0.053 cm2/V-s was achieved for a CNP/P3HT weight-weight ratio of 7/100. This degree of mobility is 10 times greater than average mobility of pristine P3HT-OTFTs. X-ray diffraction and scanning electron microscopy images reveal that the carrier mobility was enhanced by reducing the injection barrier and enhancing the carrier injection. This work demonstrates the feasibility of all-inkjet-printed OTFT technology.  相似文献   

16.
All-organic Field Effect Transistors (FETs) on plastic were fabricated by means of an innovative, simple and inexpensive technique. A thin Mylar® foil acts both as substrate and gate dielectric. We used pentacene, deposited by thermal sublimation, as semiconducting layer while contacts were fabricated with poly(ethylene-dioxythiophene)/polystyrene sulfonate (PEDOT/PSS) by means of soft lithography. On the opposite side of the foil a thin PEDOT/PSS film, acting as gate electrode, was spin coated. It is worth noting that this technique allows the realization of bottom contact and top contact devices on the same substrate and with the same semiconducting layer. Furthermore, assisted by Scanning Probe Microscopy investigations, we investigated how the device structure influences its electrical properties in terms of hole mobility, Series Contact Resistance and parasitic capacitance effects. The comparison between top-contact and bottom-contact devices shows interesting marked differences that can be mainly attributed to a different quality of PEDOT/PSS-semiconductor interface. The flexibility of the obtained structure and the easy scalability of the technological process open the way for economic production of high-resolution organic devices.  相似文献   

17.
Poly(3-hexylthiophene) (P3HT) has received much attention as a good candidate to replace inorganic semiconductors for flexible electronics due to its solution-processability. However, the low charge mobility of P3HT is an obstacle to its commercialization. To overcome this problem, we propose a new non-covalent functionalization method for carbon nanotubes (CNTs) for use in CNT/P3HT nanocomposites. By using modified pyrene molecules with hydrophobic long alkyl chains, the non-covalently functionalized CNTs can become well dispersed in hydrophobic solutions and organic semiconductor matrices. Fabrication of organic thin-film transistors (OTFTs) from the non-covalently functionalized CNT/organic semiconductor nanocomposites shows that our non-covalent functionalization method significantly reduces damage to CNTs during functionalization when compared with covalent functionalization by treatment with acids. The OTFTs show 15 times enhancement of field effect mobility (1.5 × 10−2 cm2/(V·s)) compared to the mobility of OTFTs made from pure P3HT. This enhancement is achieved by addition of only 0.25 wt% of CNTs to P3HT.   相似文献   

18.
Charge injection and transport in bottom-contact regioregular-poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs), wherein the Au source and drain contacts are modified by self-assembled monolayers (SAMs), is reported at different channel length scales. Ultraviolet photoelectron spectroscopy is used to measure the change in metal work function upon treatment with four SAMs consisting of thiol-adsorbates of different chemical composition. Treatment of FETs with electron-poor (electron-rich) SAMs resulted in an increase (decrease) in contact metal work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work function affects charge injection and is reflected in the form of the modulation of the contact resistance, R(C). For example, R(C) decreased to 0.18 MΩ in the case of the (electron-poor) 3,5-bis-trifluoromethylbenzenethiol treated contacts from the value of 0.61 MΩ measured in the case of clean Au-contacts, whereas it increased to 0.97 MΩ in the case of the (electron-rich) 3-thiomethylthiophene treated contacts. Field-effect mobility values are observed to be affected in short-channel devices (<20 μm) but not in long-channel devices. This channel-length-dependent behavior of mobility is attributed to grain-boundary limited charge transport at longer channel lengths in these devices.  相似文献   

19.
We have investigated self-assembled monolayer (SAM) treatment on SiO2 gate insulator of poly(3-hexylthiophene) (P3HT) thin-film transistor (TFT), and demonstrated a correlation between mobility and surface free energy of the insulator. The device with lower surface free energy shows higher mobility. The docosyltrichlorosilane (DCTS)-treated device exhibits the best performance among the various SAM-treated devices examined. Field-effect mobility, on/off ratio and threshold voltage of the DCTS-treated P3HT TFT were 0.015 cm2/Vs, >105 and −14 V, respectively.  相似文献   

20.
采用三相界面法及置换反应法,以氯金酸-乙醇溶液和无序Ag纳米线为原材料,在空白Si基底上成功制备出有序Ag纳米线(Ag_(NW))@Au纳米颗粒(Au_(NP))复合纳米线。采用场发射扫描电子显微镜(FESEM)和高分辨透射电子显微镜(HRTEM)对有序Ag_(NW)@Au_(NP)复合纳米线形貌进行了表征与分析,研究了氯金酸-乙醇溶液浓度和置换反应的反应时间对制备Ag_(NW)@Au_(NP)复合纳米线的影响,并且结合荧光光谱及激光拉曼光谱进一步研究了一系列有序Ag_(NW)@Au_(NP)复合纳米线对共轭聚合物聚(3-己基噻吩)(P3HT)荧光效应的影响。实验结果表明,有序Ag_(NW)@Au_(NP)复合纳米线上Au_(NP)的粒径随着置换反应时间的延长或氯金酸-乙醇溶液浓度的增加而增大,该复合纳米线对P3HT的荧光效应有增强作用,但其增强效应会随置换反应进行而减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号