首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Following nephrotoxic injury, renal repair is dependent on tubular regeneration. In the case of myoglobinuric acute renal failure (ARF), persistence of myoglobin within tubular cells, or sublethal injury sustained at the height of exposure to it, might retard this process. To test this hypothesis, a human proximal tubular cell line (HK-2) was cultured for 24 hours in the absence or presence of clinically relevant myoglobin concentrations (0.5, 1, 2, 4 mg/ml). Immediately following myoglobin removal, lethal cell injury (vital dye uptake), lipid peroxidation, and DNA damage (alkaline unwinding assay) were assessed. The extent of cell proliferation was estimated over the next four days by a tetrazolium based (MTT) assay and by determining total intracellular LDH. Myoglobin's effects on protein and DNA synthesis were also assessed (35S-methionine and bromodeoxyuridine incorporation, respectively). Myoglobin induced dose-dependent lipid peroxidation (malondialdehyde generation) and cell death (up to 80% vital dye uptake with the 4 mg/ml challenge). Although 1 mg/ml myoglobin caused no cell death, it induced nearly complete growth arrest. This lasted for approximately three days following myoglobin removal from the media. Neither of two control proteins (albumin; lysozyme) nor a second nephrotoxin (gentamicin; 1 mg/ml) reproduced this effect. The 1 mg/ml myoglobin challenge caused an 80 to 90% depression in protein and DNA synthesis. It also induced significant DNA damage, as assessed by the alkaline unwinding assay (P < 0.01). Iron chelation therapy (deferoxamine) mitigated myoglobin-induced cell killing. However, its addition following myoglobin loading worsened HK-2 outgrowth by exerting a direct anti-proliferative effect. These results indicate that: (1) sublethal myoglobin toxicity can induce transient proximal tubular cell growth arrest, potentially slowing recovery from ARF; (2) this effect correlates with, and could result from, heme-induced DNA damage and a blockade in DNA/protein synthesis; and (3) deferoxamine can inhibit proximal tubular cell proliferation. This possibility needs to be considered in designing clinical trials with DFO for myohemoglobinuric ARF.  相似文献   

2.
Oxidized lipids present in atherogenic lipoproteins are derived, in part, from the diet. To address the effects of an oxidized lipid on intestinal lipoprotein assembly and secretion, CaCo-2 cells were incubated with 13-HODE or its native fatty acid, linoleic acid, and triacylglycerol-rich lipoprotein synthesis and secretion were investigated. 13-HODE was readily taken up by cells and esterified to lipids. Although both fatty acids were largely esterified to neutral lipids, in comparison to neutral lipids containing linoleic acid, a greater proportion of cellular neutral lipids containing 13-HODE and/or its metabolites was secreted. Compared to linoleic acid, however, 13-HODE caused less triacylglycerol, derived from de novo synthesis, and less triacylglycerol mass to be secreted. Cells incubated with both linoleic acid and 13-HODE together secreted less triacylglycerol mass than did cells incubated with linoleic acid alone. Less newly synthesized apoB and apoB mass were secreted by cells incubated with 13-HODE without altering the abundance of apoB mRNA. The fraction of newly synthesized apoB translocated into the secretory pathway of cells exposed to 13-HODE was significantly less than that observed in cells incubated with linolenic acid, suggesting that 13-HODE interfered with the assembly and secretion of triacylglycerol-rich lipoprotein particles.  相似文献   

3.
Using the giant patch technique, we combined two fast relaxation methods on excised patches from guinea pig cardiomyocytes to compare the rate constants of the involved reaction steps. Experiments were done in the absence of intra- or extracellular K+. Fast ATP concentration jumps were generated by photolysis of caged ATP at pH 6.3 with laser flash irradiation at a wavelength of 308 nm and 10 ns duration, as described previously. Transient outward currents with a fast rising phase, followed by a slower decay and a small stationary current, were obtained. Voltage pulses were applied to the same patch in the presence or absence of intracellular ATP. Subtraction of the voltage jump-induced currents in the absence of ATP from those taken in the presence of ATP yielded monoexponential transient current signals, which were dependent on external Na+ but did not differ between intracellular pH (pHi) values 6.3 or 7.4. Rate constants showed a characteristic voltage dependence, i.e., saturating at positive potentials (approximately 200 s-1, 24 degrees C) and exponentially rising with increasing negative potentials. Rate constants of the fast component from transient currents obtained after an ATP concentration jump agree well with rate constants from currents obtained after a voltage jump to zero or positive potentials (pHi 6.3), and the two exhibit the same activation energy of approximately 80 kJ.mol-1. For a given membrane patch, the amount of charge that is moved across the plasma membrane is roughly the same for each of the two relaxation techniques.  相似文献   

4.
Mucosal pH abnormalities are associated with anastomotic dehiscence, ischemia, and malignancy. We postulated that intraluminal pH influences intestinal epithelial motility, proliferation, and differentiation and studied extracellular pHo (7.0-8.5) effects on human (Caco-2) intestinal epithelial motility, proliferation, and differentiation. Mucosal healing was modeled by sheet migration and differentiation by alkaline phosphatase and dipeptidyl dipeptidase specific activity. In parallel differentiation and motility studies, we inhibited proliferation with mitomycin to dissociate indirect mitogenic effects. Intracellular pHi was quantitated using BCECF/AM at varying extracellular pHo and in migrating cells. Motility was maximal at pHo 7.6 and proliferation at 7.2. Each decreased with acidity and alkalinity. By contrast, brush border enzyme activity was lowest at pHo 7.0 and highest at pHo 8.5. pHi was highest at pHo 8.5. Migrating cell pHi was higher than static cell pHi. Thus, extracellular pHo deviations perturb Caco-2 pHi homeostasis and motility. Alkalinity promotes differentiation while acidity induces proliferation and limits differentiation.  相似文献   

5.
Embryonic rat hippocampal neurons were cultured on poly-D-lysine (PDL) or on cortical astrocytes, some of which had been pretreated for 24 h with amyloid beta-protein (beta-AP). Amino acid-induced currents were quantified. Membrane capacitance (Cm), as well as the amplitude and density of amino acid-evoked currents recorded in neurons cultured on untreated astrocytes were all statistically greater than those recorded in neurons grown on PDL. However, compared to untreated astrocytes, those treated with beta-AP led to significantly lower values in neurons for Cm and GABA, kainate- and NMDA-induced currents, while glycine-activated current values were not significantly different. Furthermore, beta-AP treatment abolished spontaneous Cac2+ fluctuations in astrocytes, which may account for their impaired ability to promote the expression of functional transmitter receptors in neurons.  相似文献   

6.
7.
CaCo-2 cells were used to address the effect of the plant sterol, beta-sitosterol, on cholesterol trafficking, cholesterol metabolism, and apoB secretion. Compared to cells incubated with micelles (5 mM taurocholate and 250 microM oleic acid) containing cholesterol, which caused an increase in the influx of plasma membrane cholesterol to the endoplasmic reticulum and increased the secretion of cholesteryl esters derived from the plasma membrane, beta-sitosterol did not alter cholesterol trafficking or cholesteryl ester secretion. Including beta-sitosterol in the micelle together with cholesterol attenuated the influx of plasma membrane cholesterol and prevented the secretion of cholesteryl esters derived from the plasma membrane. Stigmasterol and campesterol had effects similar to beta-sitosterol, although campesterol did not promote a modest influx of plasma membrane cholesterol. Including beta-sitosterol in the micelle with cholesterol decreased the uptake of cholesterol. Compared to cholesterol, 60% less beta-sitosterol was taken up by CaCo-2 cells. No observable esterification of beta-sitosterol was appreciated and the transport of the plant sterol to the basolateral medium was negligible. Cholesterol synthesis and HMG-CoA reductase activities were decreased in cells incubated with beta-sitosterol. This was associated with a decrease in reductase mass and mRNA levels. Cholesteryl ester synthesis and ACAT activities were unaltered by beta-sitosterol. Both stigmasterol and campesterol decreased reductase activity, but only campesterol increased ACAT activity. beta-sitosterol did not affect the secretion of apoB mass. The results suggest that beta-sitosterol does not promote cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. beta-sitosterol interferes with the uptake of micellar cholesterol causing less plasma membrane cholesterol to influx and less cholesteryl ester to be secreted. Despite its lack of effect on cholesterol trafficking, beta-sitosterol decreases cholesterol synthesis at the level of HMG-CoA reductase gene expression.  相似文献   

8.
The vitamin D endocrine system has been involved in the impairment of intestinal calcium absorption during aging. Alterations in the nongenomic mechanism of calcitriol (1,25-dihydroxy-vitamin D3; [1, 25(OH)2D3] have been recently evidenced. In enterocytes isolated from aged rats, 1,25(OH)2D3 stimulation of Ca2+ channels through the cAMP/PKA pathway is blunted. We have now investigated whether in vivo administration of calcitriol to senescent rats reverses the absence of hormonal effects in isolated intestinal cells. In enterocytes from 20-24-month-old rats given 1,25(OH)2D3 for 3 days (30 ng/100 g bw/day), calcitriol (10(-10) M, 3-5 minutes) stimulated Ca2&plus uptake and intracellular cAMP to the same degree and protein quinase A (PKA) activity to a lesser degree than in enterocytes from young animals. Significantly higher basal levels of cAMP and PKA detected in enterocytes from old rats were not affected by prior injection of animals with 1,25(OH)2D3. When the aged rats were injected with 25(OH)D3, similar Ca2+ influx, cAMP, and PKA responses to in vitro stimulation with calcitriol were obtained. 1, 25(OH)2D3-dependent changes in Ca2+ uptake by enterocytes from both young and old rats treated with calcitriol were totally suppressed by the cAMP antagonist Rp-cAMPS, whereas the response to the agonist Sp-cAMPS was markedly depressed in aged animals. These results suggest that intestinal resistance to nongenomic 1,25(OH)2D3 stimulation of duodenal cell Ca2+ uptake develops in rats upon aging and show that in vivo administration of 1,25(OH)2D3 or its precursor to senescent rats restores the ability of the hormone to stimulate duodenal cell calcium influx through the cAMP messenger system.  相似文献   

9.
We describe the clinical features and results of cardiac catheterization, PET ([13N]ammonia, 18F-fluorodeoxyglucose (FDG)) and SPECT [123I-labeled 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP)], in a patient with acute myocardial infarction successfully treated with intracoronary thrombolytic therapy. We compared the clinical and electrocardiographic changes with the myocardial glucose and fatty acid metabolism in stunned myocardium over a period of several months. The patient we studied illustrates the features of stunned myocardium. In the subacute phase, there was a concordant depression of myocardial [13N]ammonia and FDG uptake, and the metabolic abnormalities persisted even after regional wall motion at rest had returned to normal. The electrocardiographic recovery of deep negative T waves appeared to be related to the metabolic recovery in regions of stunned myocardium in this patient.  相似文献   

10.
High density lipoproteins (HDL) were recently demonstrated in an enterocyte model (CaCo-2 cells) to mediate reverse cholesterol transport by retroendocytosis. The present study was carried out to define the role of the major HDL apoproteins (apo) A-I and apo A-II in this pathway. HDL3 was fractionated by heparin affinity chromatography into the two main fractions containing either apo A-I only (fraction A) or both apo A-I and apo A-II (fraction B). In addition, liposomes were reconstituted from purified apo A-I or apo A-II and dimyristoyl phosphatidylcholine. The cell binding properties and cholesterol efflux potential were studied in the lipoprotein fractions and the liposomes. Both fractions exhibited similar maximal binding capacities of 4427 (A) and 5041 (B) ng/mg cell protein, but their dissociation constants differed (40.5 and 167.7 micrograms/mL, respectively). Fraction A induced cholesterol efflux and stimulated cholesterol synthesis more than did fraction B. Fraction A mobilized both cellular free and esterified cholesterol, whereas fraction B preferentially mobilized cholesteryl esters. Liposomes, containing either apo A-I or apo A-II, showed specific binding, endocytosis and endosomal transport, and were released as intact particles. Apo A-I liposomes also mediated cholesterol efflux. In conclusion, there is evidence that the HDL3 subfractions A and B, as well as reconstituted liposomes containing either apo A-I or apo A-II, were specifically bound and entered a retroendocytosis pathway which was directly linked to cholesterol efflux. Quantitatively, the apo A-I subfraction appeared to play the dominant role in normal enterocytes. The apo A-II content of fraction B was related to the mobilization of cholesteryl esters.  相似文献   

11.
The liver is the primary organ involved in manganese (Mn) homeostasis. The human hepato-carcinoma cell line, Hep-G2, shows many liver specific functions. Consequently, Hep-G2 cells were investigated as a possible model of hepatic metabolism of Mn. Initial experiments showed that the concentration of Mn in the diet, or culture medium, similarly affected the retention of Mn by isolated rat hepatocytes and Hep-G2 cells. Manganese uptake by Hep-G2 cells suggested that uptake was followed by release from the cell. Uptake was saturable and half-maximal at 2.0 micromol Mn/L, and was inhibited by iodoacetate, vanadate, cold, and bepridil. The cations Fe2+, Cu2+, Ni2+, Cd2+, and Zn2+ decreased Mn uptake. Uptake was dependent on Calcium (Ca) concentration in a manner that resembled saturation kinetics. Cells that were pulsed with 54Mn and then placed into nonradioactive medium quickly released a large portion of their internalized Mn. Release of internalized Mn could be inhibited by low temperature, nocodozole, quinacrine and sodium azide. These data show that Hep-G2 cells are a potentially good model of hepatic Mn metabolism. Mn is taken up by a facilitated process that may be related to Ca uptake. Release apparently is an active, controlled process, that may involve microtubules and lysosomes.  相似文献   

12.
We have investigated the actions of somatostatin (SRIF) and angiopeptin on cell proliferation of CHO-K1 cells expressing the recently cloned rat sst2(b) receptor (CHOsst2(b)) and compared these to their effects in cells expressing the sst2(a) receptor (CHOsst2(a)). In contrast to the sst2(a) receptor, the sst2(b) receptor did not mediate inhibition of bFGF (10 ng ml(-1))-stimulated re-growth and cell proliferation. Rather, SRIF (0.1-1000 nM) and angiopeptin (0.1-1000 nM) stimulated basal re-growth and proliferation of CHOsst2(b) cells in a concentration-dependent manner (estimated pEC50 values of 7.8 and 7.9, respectively). The opposite effects of SRIF on cell proliferation mediated through the two sst2 receptor isoforms were both abolished by 18 h pre-treatment with pertussis toxin. The proliferative effect via the sst2(b) receptor was also abolished by the tyrosine kinase inhibitor, genistein. In conclusion, the present study shows that the rat sst2(a) and sst2(b) receptor splice variants mediate opposite effects on cell proliferation.  相似文献   

13.
Creatine kinase (CK) is an enzyme central to cellular high-energy phosphate metabolism in muscle. To characterize the physiological role of CK in respiratory muscle during dynamic contractions, we compared the force-velocity relationships, power, and work output characteristics of the diaphragm (Dia) from mice with combined myofibrillar and sarcomeric mitochondrial CK deficiency (CK[-/-]) with CK-sufficient controls (Ctl). Maximum velocity of shortening was significantly lower in CK[-/-] Dia (14.1 +/- 0.9 Lo/s, where Lo is optimal fiber length) compared with Ctl Dia (17.5 +/- 1.1 Lo/s) (P < 0.01). Maximum power was obtained at 0.4-0.5 tetanic force in both groups; absolute maximum power (2,293 +/- 138 W/m2) and work (201 +/- 9 J/m2) were lower in CK[-/-] Dia compared with Ctl Dia (2,744 +/- 146 W/m2 and 284 +/- 26 J/m2, respectively) (P < 0.05). The ability of CK[-/-] Dia to sustain shortening during repetitive isotonic activation (75 Hz, 330-ms duration repeated each second at 0.4 tetanic force load) was markedly impaired, with CK[-/-] Dia power and work declining to zero by 37 +/- 4 s, compared with 61 +/- 5 s in Ctl Dia. We conclude that combined myofibrillar and sarcomeric mitochondrial CK deficiency profoundly impairs Dia power and work output, underscoring the functional importance of CK during dynamic contractions in skeletal muscle.  相似文献   

14.
The intricate modulatory roles played by manifold hormones, growth factors, cytokines, extracellular calcium concentrations, intracellular second messengers, protein kinases, and nuclear poly(ADP-ribose) polymerase in proliferative, differentiative, and apoptotic processes have been the subject of investigations that were carried out by means of in vitro either primary or secondary/tertiary cultures of differentiated epithelial (hepatocytes, keratinocytes, and adrenocytes) and connective tissue cells (osteoblasts and fibroblasts) obtained from man and/or other mammalians. In most cases, an ad hoc model system, in which cells were floated on the top of the growth medium and, hence, could enjoy nearly normal respiratory exchanges, was used. Such a system increased cell viability and the ability of parenchymal epithelial cells to respond to extremely low concentrations of growth factors, hormones, and pharmaco-toxicological agents in a way conceivably very close to their behaviour in vivo.  相似文献   

15.
16.
Culture amplification in colon adenocarcinoma cell line (CaCo-2) combined with enzyme immunoassay (Pathfinder ELISA) was developed as a supplementary tool for rotavirus diagnosis. One hundred and thirty stools in which results by polyacrylamide gel electrophoresis (PAGE) were in agreement with those obtained by ELISA were amplified in the CaCo-2 cell line. After the first passage 100% specimens were revealed as positive by ELISA. This result was confirmed by PAGE and direct electron microscopy (EM) which increased the rates of rotavirus detection up to 100% after the third and fifth cell passages, respectively. All of the amplified negative stools were confirmed as negative. Among discordant results, three of the eight specimens positive by ELISA but negative by PAGE were confirmed as true positive after the third cell passage. False positive ELISA results could be discarded when the samples were culture amplified and retested by the same ELISA. Using the CaCo-2 amplification-ELISA as supplementary assay, sensitivity and specificity were 1.000 and 0.953 for ELISA and 0.917 and 1.000 for PAGE, respectively. The combined CaCo-2 cell line amplification-immunoassay method proved to be suitable both to evaluate increase in sensitivity of newly developed rotavirus assays and for rotaviral amplification before antigen assays.  相似文献   

17.
18.
19.
The purpose of this study was to provide optometrists with suggested base curves and powers for initial lens choice based on the infant's age. A retrospective chart review of 16 congenital cataract patients fitted at U.C. Davis Eye Clinic between July 1987 and May 1993 was performed. Patients with associated ocular pathologies were excluded. All patients were fitted with a Bausch & Lomb Silsoft lens, a Silicone Elastomer, set at a 3.00 D myopic posture, which was decreased with the child's increasing age and activity. This study provides a graphical approach to pediatric aphakic silicone elastomer contact lens fitting. Best-fit regression lines for both graphs have an r squared value better than 0.9. Optometrists will now be able to reference the Base Curve vs. Age and Power vs. Age graphs to determine the initial lens choice when keratometry is unachievable. Furthermore, the data suggest a need for an increased range of powers provided by the Silicone elastomer lens in order to approximate normal visual development.  相似文献   

20.
1. Di-(2-ethylhexyl)-phthalate (DEHP) possesses a great industrial value as a plasticizing agent and has become an ubiquitous environmental contaminant. In most species it is rapidly metabolized to mono-(2-ethylhexyl)-phthalate (MEHP) and 2-ethylhexanoic acid (2-EHA). Evaluation of toxicity of DEHP and its primary metabolites has been focussed on reproductive toxicity and hepatocarcinogenic properties. The aim of this study was to determine the nephrotoxic potential of both DEHP metabolites by use of cultured kidney epithelial cells (Opossum kidney cells; OK cells). 2. For this purpose, OK cells were exposed for 3 days to MEHP and 2-EHA at concentrations ranging from 0.1 -500 micromol/L and the toxicity as well as the effects on migratory activity and intracellular cytoskeleton were studied by cell biological, morphological and morphometric methods. 3. When compared with corresponding controls, treatment of OK cells with MEHP and 2-EHA, respectively, showed marked differences in cell viability between both DEHP metabolites. MEHP caused a dose-dependent decrease in cell viability (ED50 = 25 micromol/L) accompanied by a moderate swelling of the cells at concentrations up to 25 micromol/L. MEHP concentrations higher than 25 micromol/L caused a dose-dependent shrinkage of the cells and the occurrence of a high amount of cell debris as a result of cell lysis. 2-EHA did not cause a reduced viability or an altered cell volume. The migratory activity of OK cells was not significantly influenced by both metabolites. Moreover, MEHP toxicity resulted in a largely reduced and altered organization of F-actin (stress fibers), but not of myosin, microtubules and vimentin. 4. The study indicates that cultured epithelial cells can be used as a prescreening system to assess the nephrotoxicity of hazardous substances such as DEHP. As demonstrated in this study, only MEHP, but not 2-EHA, has a marked nephrotoxic effect in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号