首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
类石墨碳膜的制备及其与类金刚石碳膜的区分   总被引:7,自引:0,他引:7       下载免费PDF全文
类金刚石碳膜的碳键结构一般以sp3为主,用离子束辅助磁控溅射制备了以sp2为主的非晶碳膜,即类石墨碳膜。分析类石墨碳膜的成分、组织结构,并通过这些结果区分类石墨碳膜与类金刚石碳膜。采用卢瑟福背散射谱(RBS)、x射线衍射(XRD)、透射电镜(TEM)、x射线光电子谱(XPS)、四点探针法(FPM)分析了成分、组织结构及电阻率,结果表明:制备碳膜的晶体结构是非晶,碳键结构以sp2为主,电阻率在10-4~10-2??m之间。证明这种非晶碳膜不同于类金刚石碳膜(sp3为主)。  相似文献   

2.
高功率脉冲磁控溅射制备非晶碳薄膜研究进展   总被引:1,自引:0,他引:1  
非晶碳薄膜主要由sp3碳原子和sp2碳原子相互混杂的三维网络构成,具有高硬度、低摩擦系数、耐磨损、耐腐蚀以及化学稳定性等优异性能。然而传统制备方法难以实现薄膜结构及其性能的综合调控,高功率脉冲磁控溅射因其离子沉积特性受到领域内专家学者的关注。总结了近年来关于高功率脉冲磁控溅射制备非晶碳薄膜材料的研究进展。重点介绍了高功率脉冲磁控溅射石墨靶的放电特性,指出了其在沉积非晶碳薄膜过程中获得高碳原子离化率的条件。针对离化率和沉积速率低,主要从提高碳原子离化率和碳离子传输效率等角度,介绍了几种改进的高功率脉冲磁控溅射方法。并对比了不同高功率脉冲磁控溅射方法中的碳原子离化特征、薄膜沉积速率、结构和力学性能。进一步地,探讨了高功率脉冲磁控溅射在制备含氢非晶碳薄膜和金属掺杂非晶碳薄膜中的优势及其在燃料电池、生物、传感等前沿领域的应用。最后,对高功率脉冲磁控溅射石墨靶的离子沉积特性、非晶碳薄膜制备及其应用研究趋势进行了展望。  相似文献   

3.
不锈钢表面脉冲激光镀类金刚石碳膜   总被引:1,自引:0,他引:1  
王浩 《电加工》1997,(5):38-40
介绍了利用脉冲激光在不锈钢表面镀制类金刚石碳酸的表面加工新方法,经加工后的材料表面微细硬度可达70~100GPa,表面摩擦系数低于0.1,可广泛用于作超硬耐磨保护涂层和表面减摩擦涂层。  相似文献   

4.
介绍了利用脉冲激光在不锈钢表面镀制类金刚石碳膜的表面加工新方法。经加工后的材料表面微硬度可达70~100GPa,表面摩擦系数低于0.1,可广泛用作超硬耐磨保护涂层和表面减摩擦涂层。  相似文献   

5.
用离子源技术制备类金刚石膜研究   总被引:5,自引:1,他引:5       下载免费PDF全文
采用无灯丝离子源结合非平衡磁控溅射的方法,大面积地在不同基体上制备了光滑、均匀的类金刚石(DLC)膜层,用SEM、Raman、XPS、硬度计、划痕仪等手段分析和研究了膜层的形貌、结构及部分性能。结果表明:钛的掺入,有利于减少内应力、提高膜/基结合力,膜层的综合性能好,更适合于精密器件的表面改性。  相似文献   

6.
《金属功能材料》2011,(3):49-49
日本名古屋大学的高井治教授新近研制成功在树脂板之类制件上涂镀透明的类金刚石碳膜(DLC)的新技术。这一新技术特点在于运用了等离子化学气相沉积(CVD)并且在所用原料中添加了添加物。所获得的沉积涂层具有最高达80%的可见光透光率,  相似文献   

7.
采用SP0806AS中频磁控溅射镀膜机,在硅(100)和高速钢基体上,采用双石墨靶在不同功率下沉积了类金刚石薄膜.研究表明,在功率为5~7 kW下薄膜具有较低的ID/IG比;所得薄膜表面平整,粗糙度Ra值在1.5~2.8 nm之间,薄膜厚度随功率增加而增大;在100~200 nm Ti膜作为过渡层条件下,薄膜纳米硬度和弹性模量随功率增加呈先增大后减小趋势,硬度/杨氏模量比值先增大后减小,当功率为7 kW时具有较高值;划痕实验临界载荷随功率增加先增大后减小,最大可大于50 N;薄膜的摩擦系数较小,平均摩擦系数可小于0.15;在50 g载荷下,薄膜磨穿的时间超过300 min.确定SP0806AS中频磁控溅射镀膜机沉积类金刚石薄膜的最佳功率范围是5~7 kW.  相似文献   

8.
类金刚石碳膜的摩擦学性能及摩擦机制   总被引:3,自引:0,他引:3  
类金刚石碳膜作为低摩擦系数的固体润滑耐磨层越来越受到重视,但其摩擦学行为强烈地依赖于试验条件和膜的本质,而膜的本质又依赖于制备工艺。本文概述了不同工艺方法制备的类金刚石碳膜的摩擦学性能,介绍了气氛、湿度、载荷及滑动速度等试验条件对其摩擦学行为的影响,对提出的不同摩擦机理进行了总结和讨论。  相似文献   

9.
类金刚石碳膜在生物医学上的应用前景   总被引:1,自引:0,他引:1  
通过巨噬细胞、纤维原细胞、造骨细胞与DLC的相互作用以及动物实验,结果表明,DLC具有良好的组织相容性.从粘附的清蛋白/纤维蛋白原的量之比、动态凝血时间、血小板粘附试验的结果,得出了DLC具有优良的血液相容性的结论.最后,展望了其在微创介入治疗方面的应用前景.  相似文献   

10.
利用非平衡磁控溅射技术在单晶硅基底上沉积了类石墨非晶碳膜。利用X射线光电子光谱、Ram an光谱、高分辨透射电子显微镜及原子力显微镜对沉积薄膜的微观结构进行了详细表征;利用纳米压痕仪和球盘摩擦试验机分别对其力学性能和摩擦学性能进行了测试。结果表明,当前制备的非晶碳膜中sp2杂化碳占主导呈现出类石墨特征,但薄膜硬度可达14.2 GPa。大气环境中的摩擦性能测试表明,所制备的类石墨非晶薄膜具有优异的摩擦学性能:其承载能力高达2.8 GPa,同时具有较低摩擦因数(~0.05)和磨损率(~10-11cm3/Nm)。类石墨碳膜优异的摩擦学性能主要归因于其独特的结构、较低的内应力及良好的热稳定性。  相似文献   

11.
Thin carbon films containing about 11 at.% Ag were deposited by dc magnetron sputtering of composite graphite/silver target. The stability of film microstructure upon annealing at 600 °C in a vacuum has been studied by transmission electron microscopy and electron diffraction. The as-deposited C/Ag films consisted of silver nanoparticles distributed in an amorphous carbon matrix. Upon annealing, the tendency was revealed towards coalescence within the set of particles, i.e. increase in the particle average diameter and decrease in the density of particles with time. The above changes occurred faster than it is predicted by the theories for three-dimensional and two-dimensional diffusion coalescence. The direct collisions and fusion of particles along with the diffusion transport of Ag atoms is suggested to cause the above effect.  相似文献   

12.
采用高功率脉冲磁控溅射技术在PMMA基体上制备了ITO涂层。利用XRD、SEM对涂层进行了相结构的分析,并进行了划痕实验、光电性能测试,结果表明:偏压、氢氩流量比等工艺参数对涂层的相结构、膜基结合力、光电性能均有影响。增大偏压,膜基结合力将增强,偏压达到240 V时,膜基结合力最好(56.5N)。偏压由0 V增加到160 V的过程中,涂层晶粒增大,透射率变高( 由82.24% 增至 89.82%),电阻率变低(由0.006571 减至 0.000543 Ω.cm)。氢氩流量比由0增至0.05,透射率变低(由89.82%减至56.12% )。氢氩流量比由0增至0.03,电阻率变低(由0.000543减至0.000212 Ω.cm ) ;氢氩流量比由0.03增至0.05,电阻率变高由0.000212 增至0.000373 Ω.cm)。  相似文献   

13.
Surface modification with a high power glow discharge is an emerging technology that can be used to improve the surface characteristics. Titanium oxide films are prepared using a high-power impulse magnetron sputtering (HPPS-M) glow discharge with a current density of 2 A/cm2 and a power density of 1 kW/cm2. Observing optical emission spectrum confirms that singly-ionized titanium ions are produced in the plasma. Ions are extracted from the HIPIMS glow plasma by a substrate placed near the plasma source. It is found that the substrate is immersed in the HPPS-M glow plasma. The film is deposited by a HPPS-M, and the results are compared to those of magnetron sputtering operated by a stationary dc power source. The deposition rate is lower by HPPS-M than that by DC-MS. The main structure of the films is rutile, however an anatase structure is also observed. The mixed structure is obtained at an oxygen rate as low as 5%. Anatase structure is not significantly observed in HPPS-M compared to that in DC-MS. The intensity of the XRD profiles becomes weaker with increasing the substrate position due to the collisions of metal species with the plasma species and the background gas particles. The deposition rate of the prepared titanium oxide film is significantly influenced by the production rate of titanium ions, distance of the substrate, and the gas mixture ratio. With regard to the effect of the gas ratio, the difference in the deposition rate is probably based on the argon ion density available to sputter titanium atoms that would eventually contribute to the titanium oxide film deposition.  相似文献   

14.
The microstructure and tribological properties of carbon film produced by ion beam assisted plasma deposition in a plasma source ion implantation (PSII) chamber with energies varied from 0 to 30 keV are examined. The process is illustrated schematically, and Raman spectra as well as TEM images and corre-sponding diffraction patterns of carbon films are shown.  相似文献   

15.
Hydrogenated diamond-like carbon and fluorocarbon films, deposited in a radio-frequency (rf) plasma reactor, have high chemical inertness and high electrical resistivity. These films, deposited on aluminum and type 301 stainless steel substrates at several rf power and feed gas flow rates using different gas phase precursors, were characterized for their pinhole density and stability with exposure to 0.6 M NaCl and 0.1 M NaCl and 0.1 M Na2SO4 solutions using electrochemical impedance spectroscopy and potentiostatic techniques, respectively. The results from electrochemical characterizations with salt water exposure indicated that films with high effective pore resistances (>108 Ω · cm2)* and high stability with exposure (<10% changes in capacitance values) can be obtained over a narrow range of process conditions and gas phase compositions.  相似文献   

16.
A film growth mechanism, expressed in terms of depositing hard films onto the soft substrate, was proposed. Multicomponent thin films of Ti-Si-N were deposited onto Al substrate with a double-target magnetron sputtering system in an Ar-N2 gas mixture. The Ti-Si-N films were investigated by characterization techniques such as X-ray diffraction (XRD), atomic force microscope (AFM), electron probe microanalyzer (EPMA), scratch test and nanoindentation. The as-deposited films have a good adhesion to Al substrate and appear with smooth and lustrous surface. The films show nanocomposite structure with nano TiN grains embedded in an amorphous SiNx matrix. The maximum hardness of the films was achieved as high as 27 Gpa. The influences of the N2 flow rate and substrate temperature on the growth rate and quality of the films were also discussed. For all samples, the Ar flow rate was maintained constant at 10 ml. min-1, while the flow rate of N2 was varied to analyze the structural changes related to chemical composition and friction coefficient. The low temperature in the deposited Ti-Si-N films favors the formation of crystalline TiN, and it leads to a lower hardness at low N2 flow rate. At the same time, the thin films deposited are all crystallized well and bonded firmly to Al substrate, with smooth and lustrous appearance and high hardness provided. The results indicate that magnetron sputtering is a promising method to deposit hard films onto soft substrate.  相似文献   

17.
利用非平衡磁控溅射技术在镜面抛光的SCM415渗碳淬火钢基片上沉积了无掺杂类金刚石(DIE)薄膜和不同含量Ti掺杂类金刚石(Ti-DIE)薄膜.利用AFM、SEM、TEM对薄膜的微观结构与形貌进行了观察,利用纳米硬度计、摩擦磨损试验仪及纳米划痕仪测试了薄膜的显微硬度、摩擦系数及薄基结合强度.结果表明:随着Ti的掺杂,薄膜硬度先迅速降低,然后保持不变,在Ti含量为25at%时薄膜硬度出现回升,膜基结合强度随Ti的掺杂呈单调增强趋势.与无掺杂类金刚石薄膜相比,掺杂Ti后薄膜表面微观凸凹增多,摩擦系数增大.对于Ti-DIE薄膜来说,随着Ti掺杂量的增加,摩擦系数出现减小的趋势.其原因在于Ti掺杂量的增加使Ti-DLC薄膜变得更加致密,同时Ti的掺杂还有利于弥补基体表面的凸凹缺陷,使薄膜变得更平滑.  相似文献   

18.
The hydrogenated amorphous carbon films (a-C:H, so-called diamond-like carbon, DLC) have exceptional physical and mechanical properties and have wide applications. In the present study, amorphous hydrogenated carbon films (a-C:H) have been deposited on a Si (100) substrate at different hydrogen flow using electron cyclotron resonance chemical vapor deposition (ECR-CVD). The flow of hydrogen changed from 10 sccm to 40 sccm and the flow of acetylene was fixed at 10 sccm. The microstructure and properties of the a-C:H were measured using visible Raman spectra, Fourier transform infrared (FTIR) spectroscopy, UV-VIS spectrometer,surface profilometer and nano-indentation. The results showed that the sp3 content and sp3-CH2 structure in the amorphous hydrogenated carbon films increased with the hydrogen flow. The deposition rate decreased with the hydrogen flow. The residual stress and the nano-hardness of the amorphous hydrogenated carbon films increased with the hydrogen flow. Consequently, the a-C:H film become more diamond-like with the increase of hydrogen flow.  相似文献   

19.
Amorphous carbon films are deposited employing high power impulse magnetron sputtering (HiPIMS) at pulsing frequencies of 250 Hz and 1 kHz. Films are also deposited by direct current magnetron sputtering (dcMS), for reference. In both HiPIMS and dcMS cases, unipolar pulsed negative bias voltages up to 150 V are applied to the substrate to tune the energy of the positively charged ions that bombard the growing film. Plasma analysis reveals that HiPIMS leads to generation of a larger number of ions with larger average energies, as compared to dcMS. At the same time, the plasma composition is not affected, with Ar+ ions being the dominant ionized species at all deposition conditions. Analysis of the film properties shows that HiPIMS allows for growth of amorphous carbon films with sp3 bond fraction up to 45% and density up to 2.2 g cm− 3. The corresponding values achieved by dcMS are 30% and 2.05 g cm− 3, respectively. The larger fraction of sp3 bonds and mass density found in films grown by HiPIMS are explained in light of the more intense ion irradiation provided by the HiPIMS discharge as compared to the dcMS one.  相似文献   

20.
Planar and rotary tungsten targets were fabricated by low pressure plasma spraying (LPPS). Relative density, oxygen content by mass, microstructure, micro-hardness and ultimate tensile strength (UTS) of LPPS tungsten targets were all influenced by vacuum pressure. Compared with 1.3 × 104 Pa and 6.5 × 104 Pa, a vacuum pressure of 3.9 × 104 Pa was optimal for preparing high-quality tungsten targets. Oxygen content by mass, porosity, average grain size, micro-hardness and UTS of LPPS target fabricated under 3.9 × 104 Pa were about 0.18%, 2.8%, 0.9 μm, 377.8HV0.025 and 201.1 MPa, respectively. Electron backscattered diffraction (EBSD) from the LPPS sample (fabricated under 3.9 × 104 Pa) showed that proportions of 〈001〉, 〈011〉 and 〈111〉 oriented grains were 10.6%, 21.0% and 12.3% of the total, respectively. The tungsten target possessed excellent magnetron sputtering performance since most tungsten grains with a size <1.0 μm were irregularly distributed without preferred orientation. Rapid sputtering and uniform thinning on the surface of LPPS tungsten targets took place with nano-scaled sputtering pits being formed during magnetron sputtering. Smooth and continuous tungsten thin films with thickness about 320 nm can be deposited by magnetron sputtering from the LPPS samples. XRD spectra of tungsten thin films with body centered cubic structure showed that the intensity of the (110) diffraction peak was much higher than those of the (200), (211) and (220) peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号