首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chopra R  Sambaiah K 《Lipids》2009,44(1):37-46
Lipase-catalyzed interesterification was used to prepare different structured lipids (SL) from rice bran oil (RBO) by replacing some of the fatty acids with α-linolenic acid (ALA) from linseed oil (LSO) and n-3 long chain polyunsaturated fatty acids (PUFA) from cod liver oil (CLO). In one SL, the ALA content was 20% whereas in another the long chain n-3 PUFA content was 10%. Most of the n-3 PUFA were incorporated into the sn-1 and sn-3 positions of triacylglycerol. The influence of SL with RBO rich in ALA and EPA + DHA was studied on various lipid parameters in experimental animals. Rats fed RBO showed a decrease in total serum cholesterol by 10% when compared to groundnut oil (GNO). Similarly structured lipids with CLO and LSO significantly decreased total serum cholesterol by 19 and 22% respectively compared to rice bran oil. The serum TAGs level of rats fed SLs and blended oils were also significantly decreased by 14 and 17% respectively compared to RBO. Feeding of an n-3 PUFA rich diet resulted in the accumulation of long chain n-3 PUFA in various tissues and a reduction in the long chain n-6 PUFA. These studies indicate that the incorporation of ALA and EPA + DHA into RBO can offer health benefits.  相似文献   

2.
Kimura F  Ito S  Endo Y  Doisaki N  Koriyama T  Miyazawa T  Fujimoto K 《Lipids》2011,46(12):1101-1110
Long-chain polyunsaturated fatty acids (LC-PUFA), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA), are considered critical for the development of infants and are commonly supplemented in infant formulae. In this study, two common sources of n-3 LC-PUFA, fish oil (FO) and DHA-rich microalgal oil (DMO), were fed to rat pups of mildly n-3 PUFA-deficient dams to compare changes in LC-PUFA of tissue phospholipids. The milk from dams fed a n-3 PUFA-deficient diet contained less n-3 LC-PUFA than that of dams fed a control diet (AIN-93G). The pups' were given orally 1 mg/g weight of either FO or DMO for 17 days between the ages of 5 and 21 days, the pups were weaned, and sacrificed 1 week later for analysis of fatty acid compositions of brain, heart, kidney, spleen, and thymus phospholipids. Although both FO and DMO brought about a recovery in the tissue DHA levels compared to those of the control group (pups from AIN-93G-fed dams), DMO was more effective at restoring tissue LC-PUFA status because it was richer in DHA than FO. FO had a slightly lower PUFA level than that required to bring the LC-PUFA status completely to normal levels in this experiment, and EPA did not accumulate in tissues under the conditions tested here. These results demonstrate the effectiveness of ingesting either FO or DMO in the pre-weaning period for improving mild n-3 PUFA deficiency.  相似文献   

3.
Previous studies have reported that feeding rats diets rich in fish oils, which contain high proportions of the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic and docosahexaenoic acids, results in lowering of blood lipid levels and suppression of lymphocyte functions testedex vivo andin vivo. The effects of other n-3 PUFA, such as α-linolenic acid, which is found in high proportions in linseed oil, are not as well documented. Therefore, in the present study, weanling male rats were fed for six weeks on one of five high-fat (20% by weight) diets made by mixing together sunflower and linseed oils; the resulting blends had n-6/n-3 PUFA ratios of 112.5:1 (pure sunflower oil), 14.8:1, 6.5:1, 0.8:1, and 0.33:1 (pure linseed oil); the levels of all other components in the diet were identical. The final body weight and total dissectable fat were lowest in rats fed the pure linseed oil diet. Serum cholesterol, triacylglycerol and nonesterified fatty acid concentrations decreased as the n-6/n-3 PUFA ratio of the diet decreased. The fatty acid composition of the serum and of spleen lymphocytes was influenced by the diet fed-there was a progressive decrease in the proportions of linoleic and arachidonic acids and a progressive increase in the proportion of α-linolenic acid as the n-6/n-3 PUFA ratio of the diet decreased. Eicosapentaenoic and docosahexaenoic acids were detected in the serum but not in spleen lymphocytes. Inclusion of α-linolenic acid in the diet resulted in significant suppression of spleen lymphocyte proliferation in response to the T-cell mitogen concanavalin A and in spleen lymphocyte natural killer cell activity, both measuredex vivo. The localized graft vs. host response, a measure of cellmediated immunityin vivo, progressively decreased as the n-6/n-3 PUFA ratio of the diet decreased. Thus, this study shows that dietary α-linolenic acid results in lowered blood lipid levels and suppressed lymphocyte functionsex vivo andin vivo. With respect to these effects, α-linolenic acid is as potent as dietary fish oil.  相似文献   

4.
Mateos HT  Lewandowski PA  Su XQ 《Lipids》2011,46(8):741-751
This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.  相似文献   

5.
A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO–PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO–LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO–LO, LO–PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.  相似文献   

6.
We have reported that dietary fish oil (FO) rich in n-3 PUFA modulates gut contractility. It was further demonstrated that the gut of spontaneously hypertensive rats (SHR) has a depressed contractility response to prostaglandins (PG) compared with normotensive Wistar-Kyoto (WKY) rats. We investigated whether feeding diets supplemented with n-3 PUFA increased gut contractility and restored the depressed prostanoid response in SHR gut. Thirteen-week-old SHR were fed diets containing fat at 5 g/100 g as coconut oil (CO), lard, canola oil containing 10% (w/w) n-3 FA as alpha-linolenic acid (1 8:3n-3), or FO (as HiDHA, 22:6n-3) for 12 wk. A control WKY group was fed 5 g/100 g CO in the diet. As confirmed, the SHR CO group had a significantly lower gut response to PGE2 and PGF2alpha compared with the WKY CO group. Feeding FO increased the maximal contraction response to acetylcholine in the ileum compared with all diets and in the colon compared with lard, and restored the depressed response to PGE2 and PGF2alpha in the ileum but not the colon of SHR. FO feeding also led to a significant increase in gut total phospholipid n-3 PUFA as DHA (22:6n-3) with lower n-6 PUFA as arachidonic acid (20:4n-6). Canola feeding led to a small increase in ileal EPA (20:5n-3) and DHA and in colonic DHA without affecting contractility. However, there was no change in ileal membrane muscarinic binding properties due to FO feeding. This report confirms that dietary FO increases muscarinic- and eicosanoid receptor-induced contractility in ileum and that the depressed prostanoid response in SHR ileum, but not colon, is restored by tissue incorporation of DHA as the active nutrient.  相似文献   

7.
There are conflicting findings over the bioavailability of long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) from krill oil (KO) compared with fish oil (FO) in short- and long-term studies. The aim of this study was to compare the effects of KO versus FO on the enrichment of molecular species of plasma phospholipids in young women following a 30-day consumption of the n-3 oils. Eleven healthy women aged 18–45 years consumed seven capsules of KO per day (containing a total of 1.27 g n-3 PUFA) or five capsules of FO per day (total of 1.44 g n-3 PUFA) for 30 days in a randomized crossover study, separated by at least a 30-day washout period. Fasting blood samples were collected at day zero (baseline), day 15 and day 30 and analyzed by HPLC-MS/MS for molecular species of phospholipids. Supplementation increased n-3 PUFA in main phospholipids classes in both groups. After 30 days of supplementation, 35 out of 70 molecular species containing eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-3) had a significantly greater concentration in KO group compared with the FO treated group. The majority (89%) of the differentiated molecular species were choline and ethanolamine ether-phospholipids. These data reveal that analysis of plasma phospholipids following 30 days of consumption of KO (a marine oil rich in phospholipids, including ether phospholipids) resulted in an enrichment of n-3 PUFA in molecular species of ether-phospholipids compared with FO (a triacylglycerol-rich marine oil).  相似文献   

8.
The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague–Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F, prostaglandin E2, thromboxane B2, leukotriene B4, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats.  相似文献   

9.
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented.  相似文献   

10.
Omega‐3 (n‐3) long‐chain polyunsaturated fatty acids (LC‐PUFA) are essential components of the diet of all vertebrates. The major dietary source of n‐3 LC‐PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n‐3 LC‐PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild‐type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO‐fed fish (117 g) was slightly lower than that of FO‐ and DCO‐fed fish (130 and 127 g, respectively). Inclusion of the GM‐derived oils enhanced the n‐3 LC‐PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM‐derived oils. This showed a similar pattern to that observed in WCO‐fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM‐derived oils could be suitable alternatives to dietary FO in sea bream.  相似文献   

11.
Atlantic salmon post-smolts were fed diets containing either fish oils (Fosol, FO and Marinol, MO) rich in long-chain n-3 polyunsaturated fatty acids (PUFA), or plant oils rich in 18:2n-6 (sunflower oil, SO) or 18:3n-3 (linseed oil, LO) for 12 wk. The major PUFA in individual phospholipids from gill and kidney were related to the dietary lipid intake. Levels of n-6 PUFA were highest while levels of n-3 PUFA were lowest in fish fed SO. Fish fed LO generally had lower levels of 20:4n-6 compared to the other treatments while fish fed SO generally had the highest levels of 20:4n-6. In all phospholipid classes except phosphatidylinositol (PI) 20:5n-3 was greatest in fish fed MO followed by FO, LO, and SO. In PI, 20:5n-3 was also highest in fish fed MO but those fed LO contained more 20:5n-3 than those fed FO. This resulted in the ratio of the eicosanoid precursors, 20:4n-6/20:5n-3, being significantly greater in fish fed SO, for all phospholipid classes, compared to fish fed the other three dietary oils. The activity of gill phospholipase A was greatest in fish fed FO and was lowest in fish fed SO. The concentration of PGF was significantly increased in gill homogenates from fish fed MO compared to the other three treatments while PGF was significantly increased in fish fed SO compared to those fed LO. The concentration of PGE3 was significantly reduced in kidney homogenates from fish fed SO compared to the other three treatments while PGE2 was significantly increased in fish fed SO compared to those fed either FO or LO.  相似文献   

12.
The effects of different dietary oils on the fatty acid compositions of liver phospholipids and the desaturation and elongation of [1-14C]18∶3n−3 and [1-14C]18∶2n−6 were investigated in isolated hepatocytes from Atlantic salmon. Atlantic salmon smolts were fed diets containing either a standard fish oil (FO) as a control diet, a 1∶1 blend of Southern Hemisphere marine oil and tuna orbital oil (MO/TO), sunflower oil (SO), borage oil (BO), or oliver oil (OO) for 12 wk. The SO and BO diets significantly increased the percentages of 18:2n−6, 18:3n−6, 20:2n−6, 20:3n−6, and total n-6 polyunsaturated fatty acids (PUFA) in salmon liver lipids in comparison with the FO diet. The BO diet also increased the percentage of 20:4n−6. Both the SO and BO diets significantly reduced the percentages of all n−3 PUFA in comparison with the FO diet. The OO diet significantly increased the percentages of 18:1n−9, 18:2n−6, total monoenes, and total n−6 PUFA in liver lipids compared to the FO diet, and the percentages of all n−3 PUFA were significantly reduced. With [1-14C]18:3n−3, the recovery of radioactivity in the products of Δ6 desaturation was significantly greater in the hepatocytes from salmon fed SO, BO, and OO in comparison with the FO diet. The BO diet also increased the recovery of radioactivity in the products of Δ5 desaturation. Only the BO diet significantly affected the desaturation of [1-14C]18:2n−6, increasing recovery of radioactivity in both Δ6- and Δ5-desaturation products. In conclusion, dietary BO, enriched in γ-linolenic acid (18:3n−6), significantly increased the proportions of both 20:3n−6 and 20:4n−6 in salmon liver phospholipids and also significantly increased the desaturation of both 18:2n−6 and 18:3n−3 in salmon hepatocytes. The possible relationships between dietary fatty acid composition, tissue phospholipid fatty acid composition, and desaturation/elongation activities are discussed.  相似文献   

13.
The abundance of 20- to 24-carbon fatty acids in omasal digesta of cows fed grass silage-based diets supplemented with 0 (Control) and 250 g/day of fish oil (FO) was examined to investigate the fate of long-chain unsaturated fatty acids in the rumen. Complimentary argentation thin-layer chromatography and gas-chromatography mass-spectrometry analysis of fatty acid methyl esters and corresponding 4,4-dimethyloxazoline derivatives prepared from fish oil and omasal digesta enabled the structure of novel 20- to 22-carbon fatty acids to be elucidated. Compared with the Control, the FO treatment resulted in the formation and accumulation of 27 novel 20- and 22-carbon biohydrogenation intermediates containing at least one trans double bond and the appearance of cis-14 20:1, 20:2n-3, 21:4n-3 and 22:3n-6 not contained in fish oil. No conjugated ≥20-carbon fatty acids were detected in Control or FO digesta. In conclusion, fish oil in the diet results in the formation of numerous long-chain biohydrogenation intermediates in the rumen of lactating cows. Comparison of the intake and flow of 20-, 21- and 22-carbon fatty acids at the omasum in cows fed the Control and FO treatments suggests that the first committed steps of 20:5n-3, 21:5n-3 and 22:6n-3 hydrogenation in the rumen involve the reduction and/or isomerisation of double bonds closest to the carboxyl group.  相似文献   

14.
The main objective of this study was to determine the best vegetable oils (VO) for nutrition of African catfish by assessing the effects of a complete replacement of fish oil (FO) by different VO sources on its growth performance, fatty acid composition, and elongase-desaturase gene expression levels. Fish (16.2 g of initial body weight) were fed with five experimental isonitrogenous, isolipidic, and isoenergetic diets in which FO was totally replaced by cottonseed oil (CO), palm oil (PO), desert date oil (DO), or Shea butter (SB). Complete replacement of FO with VO did not affect growth performance except for low values in fish fed SB diet. Muscle n-3 LC-polyunsaturated fatty acids (PUFA) were significantly reduced in fish fed VO-based diets when compared with FO fed fish. However, the muscle arachidinic acid (ARA) levels in phospholipid class were 1.4 to 1.6 times higher in fish fed CO and DO diets than FO fed fish despite the lower ARA suppliers from these VO-based diets, suggesting endogenous LC-PUFA biosynthesis from PUFA precursors in fish fed these VO. The fads2 and elovl5 gene expression levels in liver of fish fed DO were also higher compared to FO controls. Therefore, all the results support the hypothesis that African catfish has higher biosynthesis capacity to convert vegetable n-6 PUFA precursors like linoleic acid (LNA, 18:2n-6) into n-6 LC-PUFA of the ARA type, compared to the conversion of vegetable α-linolenic acid (ALA, 18:3n-3) into n-3 LC-PUFA of the eicosapentanoic acid (EPA) or docosahexanoic acid (DHA) type. The results also indicate that DO can be recommended as the best alternative to FO replacement in African catfish nutrition.  相似文献   

15.
In this study, we examined the effect of dietary arachidonic acid (AA) and sesame lignans on the content and n-6/n-3 ratio of polyunsaturated fatty acid (PUFA) in rat liver and the concentrations of triglyceride (TG) and ketone bodies in serum. For 4 wk, rats were fed two types of dietary oils: (i) the control oil diet groups (CO and COS): soybean oil/perilla oil=5∶1, and (ii) the AA-rich oil group (AO and AOS): AA ethyl esters/palm oil/perilla oil=2∶∶1, with (COS and AOS) or without (CO and AO) 0.5% (w/w) of sesame lignans. Dietary AA and sesame lignans significantly affected hepatic PUFA metabolism. AA content and n-6/n-3 ratio in the liver were significantly increased in the AO group, despite the dietary total of n-6 PUFA being the same in all groups, while AOS diet reduced AA content and n-6/n-3 ratio to a level similar to the CO and COS groups. These results suggest that (i) dietary AA considerably affects the hepatic profile and n-6/n-3 ratio of PUFA, and (ii) dietary sesame lignans reduce AA content and n-6/n-3 ratio in the liver. In the AO group, the concentration of acetoacetate was significantly increased, but the ratio of β-hydroxybutyrate/acetoacetate was decreased. On the other hand, the AO diet increased the concentration of TG in serum by almost twofold as compared to other groups. However, the AOS diet significantly reduced serum IG level as compared to the AO group. In addition, the AOS diet signicantly increased the acetoacetate level, but reduced the β-hydroxybutyrate/acetoacetate ratio. These results suggest that dietary sesame lignans promote ketogenesis and reduce PUFA esterification into TG. This study resulted in two findings: (i) sesame lignans inhibited extreme changes of the n-6/n-3 ratio by reducing hepatic PUFA content, and (ii) the reduction of hepatic PUFA content may have occurred because of the effects of sesame lignans on PUFA degradation (oxidation) and esterification.  相似文献   

16.
17.
A. Suárez  M. J. Faus  A. Gil 《Lipids》1996,31(3):345-348
The fatty acid composition of heart, kidney, and lung was studied in weanling rats fed three diets differing in their polyunsaturated fatty acid content for 0, 2, and 4 wk. The first group had a 10% w/w fat semipurified diet which consisted of a mixture of olive oil (62.5%), soybean oil (11.1%), and refined coconut oil (26.4%) and provided 18:1n-9, 18:2n-6, and 18:3n-3 in similar amounts to a maternal human milk (diet HO). The second group received 7% of HO fat and 3% fish oil (0.4% 20:4n-6 and 5% 22:6n-3 of total fatty acids) (diet FO), and the third group was fed 7% HO fat, 1.5% of the same fish oil, and 1.5% of a purified pig brain phospholipid concentrate (0.6% 20:4n-6 and 3.5% 22:6n-3 of total fatty acids) (diet FO+BPL). The experimental diets increased tissue monounsaturated fatty acids in comparison with rats at weaning. Tissue lipid content of 20:4n-6 was increased and 22:6n-3 decreased in Group HO compared with weanling rats, whereas opposite changes were observed in Group FO. Feeding diet FO+BPL increased 22:6n:3 in tissue lipids compared with diet HO, and increased 20:4n-6 content in relation to diet FO. Our results indicate that rat heart, kidney, and lung are highly responsive to dietary n-3 and n-6 long-chain polyunsaturated fatty acids during postnatal life.  相似文献   

18.
Yang ZH  Miyahara H  Takemura S  Hatanaka A 《Lipids》2011,46(5):425-434
We investigated the effect of saury oil on the alleviation of metabolic syndrome in mice. Saury oil contains 18% (w/w/) n-3 polyunsaturated fatty acids (n-3 PUFA) and 35% (w/w) monounsaturated fatty acids (MUFA). Diabetic KKAy mice were fed a 10% soybean oil diet (control) or a 10% saury oil diet for 4 weeks, and diet-induced obese C57BL/6J mice were fed a high-fat diet containing 32% lard (control) or 22% lard plus 10% saury oil for 6 weeks. After the intervention periods, the levels of glucose, insulin and lipids in plasma had decreased significantly for the saury oil diet group, and insulin sensitivity had improved. These favorable changes may be attributed to the increased adiponectin and decreased TNFα and resistin levels in plasma. The saury oil diet also resulted in downregulated expression of the lipogenic genes (SREBP-1, SCD-1, FAS, and ACC) as well as upregulation of the fatty acid oxidative gene, CPT-1, and the energy expenditure-related genes (PGC1α and PGC1β) in white adipose tissue for the diet-induced obese C57BL/6J mice. An increase in n-3 PUFA levels and the concomitant decrease in the n-6/n-3 PUFA level ratio in serum, white adipose tissue, and liver with a saury oil diet are likely to be involved in the beneficial changes to the metabolic indicators. MUFA may also play a positive role in remodeling lipid composition. Based on these mice models, our results suggest a potential use for saury oil for improving metabolic abnormalities.  相似文献   

19.
El-Sohemy A  Archer MC 《Lipids》1999,34(10):1037-1043
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis, catalyzes the formation of mevalonate which is also required for cell proliferation. Changes in HMG-CoA reductase may mediate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFA) on experimental mammary tumorigenesis, but the mechanisms by which these fatty acids regulate HMG-CoA reductase are unclear. To determine whether the low density lipoprotein receptor (LDL-R) is required for this regulation, groups of female LDL-R knockout (−/−) and wild-type (+/+) mice were fed 7% fat diets rich in either n-3 (menhaden oil) or n-6 (safflower oil) PUFA for 1 wk. Dietary PUFA and deletion of the LDL-R had independent effects on HMG-CoA reductase and serum lipids, and a significant diet-gene interaction was observed. The effects of PUFA on HMG-CoA reductase in the mammary gland, but not the liver, were mediated by the LDL-R. We also observed that differences in HMG-CoA reductase and serum LDL-cholesterol, high density lipoprotein cholesterol, and triglycerides between −/− and +/+ mice were dependent on whether the mice were fed n-3 or n-6 PUFA. Differences between −/− and +/+ mice were much greater when animals were fed n-6 PUFA rather than n-3 PUFA. These results show that the LDL-R mediates the effects of PUFA on HMG-CoA reductase in the mammary gland but not the liver. Furthermore, the composition of dietary PUFA profoundly influences the effects of deleting the LDL-R on HMG-CoA reductase and serum lipids and suggests that diet may influence the phenotype of other knockout or transgenic animals. This work was presented in part at the Third Congress of the International Society for the Study of Fatty Acids and Lipids, June 1–5, 1998, Lyon, France.  相似文献   

20.
The effects of clofibrate on the content and composition of liver and plasma lipids were studied in mice fed for 4 wk on diets enriched in n−6 or n−3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO), respectively; both oils were fed at 9% of the diet (dry weight basis). Only FO was hypolipidemic. Both oil regimes led to slightly increased concentrations of phospholipids (PL) and triacylglycerols (TG) in liver as compared with a standard chow diet containing 2% fat. Clofibrate promoted hypolipidemia only in animals fed SO. Its main effect was to enlarge the liver, such growth increasing the amounts of major glycerophospholipids while depleting the TG. SO and FO consumption changed the proportion of n−6 or n−3 PUFA in liver and plasma lipids in opposite ways. After clofibrate action, the PUFA of liver PL were preserved better than in the absence of oil supplementation. However, most of the drug-induced changes (e.g., increased 18∶1n−9 and 20∶3n−6, decreased 22∶6/20∶5 ratios) occurred inrrespective of lipids being rich in n−6 or n−3 PUFA. The concentration of sphingomyelin (SM), a minor liver lipid that virtually lacks PUFA, increased with the dietary oils, decreased with clofibrate, and changed its fatty acid composition in both situations. Thus. oil-increased SM had more 22∶0 and 24∶0 than clofibrate-decreased SM, which was significantly richer in 22∶1 and 24∶1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号