共查询到20条相似文献,搜索用时 62 毫秒
1.
任务分配问题是多UCAV协同控制的关键和有效保证。综合考虑问题的多规划指标和多类复杂约束条件,建立了基于多目标整数规划的协同多任务分配模型。通过模拟生物免疫系统的免疫特征和运行机制,并将粒子群优化作为算法的局部搜索算子,设计了一种适用于问题求解的免疫粒子群算法,使算法同时具有人工免疫算法种群多样性好、粒子群优化局部搜索能力和进化方向性强等特点。仿真实验表明该方法具有良好的优化效果和时间特性,可较好地解决多UCAV协同任务分配问题。 相似文献
2.
3.
本文主要介绍了粒子群(Praticle Swarm Optimizer,PSO)算法,它是一种新的基于群体智能的优化算法,是在鸟群觅食行为规律的基础上提出的。他其结构简单、参数调整简单易行,更适合计算机编程处理,但在该算法中,如果粒子速度始终保持较大,容易"飞越"解空间中的最优区域,造成发散现象,收敛不到最优解,如果从惯性权重的自适应方面来调整,就可以很好的解决该问题。 相似文献
4.
针对基本粒子群优化(PSO)算法早熟收敛、易陷入局部极值的缺陷,提出自适应任务分配的粒子群优化算法。该算法根据粒子的多样性动态分配粒子任务,把种群粒子分为开发和探索两种类型,分别采用全局模型和动态邻域局部模型执行开发和探索任务以平衡算法的全局和局部搜索能力,维持种群多样性。动态邻域模型扩大了解的搜索空间,能有效抑制早熟停滞现象,采用高斯扰动对处于停滞状态的精英粒子进行学习,协助精英粒子跳出局部最优,进入解空间的其他区域继续进行搜索。针对6个标准复合测试函数进行实验,结果表明所提算法具有更强的全局搜索能力,求解精度更高。 相似文献
5.
基于改进粒子群算法的多无人机任务分配研究 总被引:4,自引:0,他引:4
任务分配问题是多无人机协同控制的关键技术之一.在深入分析多无人机任务分配问题特点的基础上,对现有模型进行了扩展,建立了多无人机协同任务分配的混合移数线性规划(MILP)模型.对现有粒子群算法进行了改进,提出一种具有较强全局搜索能力的多子群多阶段粒子群算法,开展了粒子群算法在多无人机协同任务分配问题中的应用研究,主要针对粒子群算法的编码策略、约束处理、算子选取、参数设置等方面进行相应的调整和改进.最后对算法进行了仿真,仿真结果表明了该方法的有效性. 相似文献
6.
7.
粒子群算法(PSO)是一种随机全局优化算法,在许多领域得到了广泛应用。针对PSO存在易陷入局部极值、进化后期收敛速度缓慢的缺点,提出一种基于速度夹角的粒子群协同优化算法(V-PSCO),并且引入了一种基于高斯分布的累积分布函数的惯性权重调整策略。将V-PSCO用于几种典型函数的优化问题,结果表明,V-PSCO具有更强的全局搜索能力,优化性能明显提高。 相似文献
8.
研究救援场景下的多无人机协同任务分配问题,考虑幸存者所需援助类型的不同,建立更贴合实际的组合优化模型.针对该模型,提出一种自适应遗传学习粒子群算法(adaptive genetic learning particle swarm optimization, AGLPSO).首先,根据无人机与幸存者之间的救援关系,采用一种实向量编码机制处理决策变量约束,以简化模型求解.然后,通过两层级联结构提高算法搜索能力:第1层通过遗传学习策略生成高质量的精英粒子,并对进化停滞的粒子采用精英学习策略进行更新,以跳出局部最优;第2层利用精英粒子指导种群的搜索方向,并根据粒子群的进化速度和粒子的聚集程度,采用自适应进化策略提高算法在不同进化时期的寻优能力.仿真实验表明,所提出的AGLPSO算法能快速、有效地找到合理的救援分配方案. 相似文献
9.
张锦华 《计算机工程与应用》2012,48(5):29-31
为了提高粒子群算法的寻优速度和精度,提出一种改进的云自适应粒子群算法(MCAPSO)。算法中根据粒子适应度值把种群分为三个子群,分别采用不同的惯性权重生成策略和进化策略,普通子群粒子采用云自适应惯性权重,有效地调整了算法的全局与局部搜索能力。选取了五个基准函数进行测试,与其他PSO算法作了比较。仿真结果表明该方法是有效的。 相似文献
10.
粒子群算法对所有粒子采用相同的惯性权重,忽视了单个粒子的特性,导致收敛精度偏低且易陷入局部最优.结合RMSprop算法中对每一个维度进行自适应设置的策略,提出一种自适应惯性权重粒子群优化算法RMSPSO.考虑粒子每一个维度的速度变化及动量,进行自适应动态惯性权重设置,使算法在全局寻优和局部寻优之间达到良好平衡.选取10... 相似文献
11.
为了提高多目标优化算法的收敛性、分布性和减少算法的计算代价,提出一种基于量子行为特性的粒子群优化(QPSO)和拥挤距离排序的多目标量子粒子群优化(MOQPSO-CD)算法.MOQPSO-CD利用QPSO快速接近真实的Pareto最优解,同时引入高斯变异算子以增强解的多样性.采用拥挤距离排序的方法对外部存储器中最优解进行更新和维护,使得从中选择的具有全局最优的领导粒子能够引导粒子群最终找到真实的Pareto最优解.仿真结果表明,MOQPSO-CD具有更好的收敛性和更均匀的分布性. 相似文献
12.
13.
针对有人/无人战斗机协同空战中的火力分配问题,建立了以目标总存活概率最小和武器消耗数量最少的火力分配多目标优化模型,并提出一种改进的多目标蛙跳算法用于求解问题的Pareto最优解集.该改进算法充分利用混洗蛙跳算法收敛速度快、收敛精度高的算法优势进行全局寻优,利用自适应网格法对非劣解进行维护和更新,并在青蛙种群的全局进化过程中引入Tent混沌变异以避免算法早熟收敛.为便于从求解得到的Pareto最优解集中选择出最优火力分配方案,提出了一种最优火力分配方案的自主选择规则.最后通过仿真实验验证了所提方法的可行性和有效性.实验结果表明,所提方法能有效求解有人/无人战斗机协同空战中的火力分配问题. 相似文献
14.
在无人机路径规划问题中,传统算法存在计算复杂与收敛慢等缺点,粒子群优化算法(PSO)得益于其算法原理简单、通用性强、搜索全面等特性,现多用于无人机航路规划.然而,常规PSO算法容易陷入局部最优,本文在优化调整自适应参数的基础上综合引入全局极值变异与加速度项,以平衡全局和局部搜索效率,避免种群陷入“早熟”.对基准测试函数进行测试的结果表明,本文所提改进PSO算法收敛速度更快,精度更高.在实例验证部分,首先提取飞行场景特征,结合无人机性能约束,进行环境建模;然后将多项运行约束和期望的最小化飞行时间均转化为罚函数,以最小化罚函数作为目标,构建无人机飞行任务场景下的航路规划模型,并利用本文所提改进粒子群算法进行求解,最后通过对比仿真验证了改进粒子群算法的高效性和实用性. 相似文献
15.
针对流数据的实时、有序和维数高等特点, 提出一种基于多种群协同微粒群优化的流数据聚类算法. 该算法利用变量分而治之的思想, 多个种群协同优化多个类中心, 进而求出问题完整的类中心集合. 给出一种类中心变化趋势的预估策略, 以快速追踪环境变化. 为防止多个子微粒群同时优化一个类中心, 提出一种相似子微粒群的合并策略. 最后将所提出的算法用于多个数据集, 实验结果验证了算法的有效性.
相似文献16.
针对无人机(UAV)在三维环境中如何由起始点到目标点合理地规划路径避开障碍物,提出了一种基于改进粒子群算法与滚动策略相结合的UAV路径规划与避障方法.该方法首先以UAV为中心,通过传感器建立UAV的可视区域模型;其次结合滚动策略滚动探知UAV周围环境信息;最后,利用改进的粒子群算法进行路径搜索,并加入综合转角控制提高路径的平滑性.在传统粒子群算法中加入信息素与启发函数,增强算法的全局搜索能力,并对参数进行特定设计提高算法的收敛速度.仿真结果表明,该方法可以实现实时避障,所规划的路径相对平滑,且改进算法比传统算法具有较高的收敛性. 相似文献
17.
枢纽站选址是轴辐式网络优化设计的重要问题,枢纽站覆盖则是该问题的一个类型.考虑枢纽站建站成本和节点间运输距离的不确定性,结合随机优化和鲁棒优化方法,建立了完备轴辐式网络中多分配枢纽站集覆盖问题的随机-鲁棒优化模型;采用二进制编码,对量子粒子群算法进行改进,加入免疫思想,设计了免疫量子粒子群求解算法.最后通过算例对模型进行仿真计算,结果表明了该模型及算法的可行性和有效性. 相似文献
18.
19.
针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.
相似文献20.
Yuan Sun Zhicheng Dong Liuqing Yang Donghong Cai Weixi Zhou Yanxia Zhou 《Computational Intelligence》2024,40(1):e12625
This article investigates the use of unmanned aerial vehicles (UAVs) in assisting hybrid non-orthogonal multiple access (NOMA) systems to enhance spectrum efficiency and communication connectivity. A joint optimization problem is formulated for UAV positioning and user grouping to maximize the sum rate. The formulated problem exhibits non-convexity, calling for an effective solution. To address this issue, a two-stage approach is proposed. In the first stage, a particle swarm optimization algorithm is employed to optimize the UAV positions without considering user grouping. With the UAV positions optimized, a game theory-based approach is utilized in the second stage to optimize user grouping and improve the sum rate of the hybrid NOMA system. Simulation results demonstrate that the proposed two-stage method achieves solutions close to the global optimum of the original problem. By optimizing the positions of UAVs and user groups, the sum rate can be effectively improved. Additionally, optimizing the deployment of UAVs ensures better fairness in providing communication services to multiple users. 相似文献