首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemical mass balance (CMB) receptor model using particle-phase organic compounds as tracers is applied to apportion the primary source contributions to fine particulate matter and fine particulate organic carbon concentrations in the southeastern United States to determine the seasonal variability of these concentrations. Source contributions to particles with aerodynamic diameter < or =2.5 microm (PM2.5) collected from four urban and four rural/suburban sites in AL, FL, GA, and MS during April, July, and October 1999 and January 2000 are calculated and presented. Organic compounds in monthly composite samples at each site are identified and quantified by gas chromatography/mass spectrometry and are used as molecular markers in the CMB model. The major contributors to identified PM2.5 organic carbon concentrations at these sites in the southeastern United States include wood combustion (25-66%), diesel exhaust (14-30%), meat cooking (5-12%), and gasoline-powered motor vehicle exhaust (0-10%), as well as smaller but statistically significant contributions from natural gas combustion, paved road dust, and vegetative detritus. The primary sources determined in the present study when added to secondary aerosol formation account for on average 89% of PM2.5 mass concentrations, with the major contributors to PM2.5 mass as secondary sulfate (30+/-6%), wood combustion (15+/-12%), diesel exhaust (16+/-7%), secondary ammonium (8+/-2%), secondary nitrate (4+/-3%), meat cooking (3+/-2%), gasoline-powered motor vehicle exhaust (2+/-2%), and road dust (2+/-2%). Distinct seasonality is observed in source contributions, including higher contributions from wood combustion during the colder months of October and January. In addition, higher percentages of unexplained fine organic carbon concentrations are observed in July, which are likely due to an increase in secondary organic aerosol formation during the summer season.  相似文献   

2.
The multivariate receptor models Positive Matrix Factorization (PMF) and Unmix were used along with the EPA's Chemical Mass Balance model to deduce the sources of PM2.5 at a centrally located urban site in Seattle, WA. A total of 289 filter samples were obtained with an IMPROVE sampler from 1996 through 1999 and were analyzed for 31 particulate elements including temperature-resolved fractions of the particulate organic and elemental carbon. All three receptor models predicted that the major sources of PM2.5 were vegetative burning (including wood stoves), mobile sources, and secondary particle formation with lesser contributions from resuspended soil and sea spray. The PMF and Unmix models were able to resolve a fuel oil combustion source as well as distinguish between diesel emissions and other mobile sources. In addition, the average source contribution estimates via PMF and Unmix agreed well with an existing emissions inventory. Using the temperature-resolved organic and elemental carbon fractions provided in the IMPROVE protocol, rather than the total organic and elemental carbon, allowed the Unmix model to separate diesel from other mobile sources. The PMF model was able to do this without the additional carbon species, relying on selected trace elements to distinguish the various combustion sources.  相似文献   

3.
An expanded factor analysis model (ME-2) that is capable of taking into account the influence of independent variables such as wind speed, wind direction, time of year and other variables of the measured fine particle matter (PM2.5) concentration data was utilized for identifying sources of airborne pollutants and providing quantitative estimations of the contribution of each source. The chemical composition data used in this study were obtained from PM2.5 samples collected using the Interagency Monitoring of Protected Visual Environments samplers from August 1999 to December 2001 at an urban monitoring site in Washington, DC. The expanded model has been applied to two different data sets based on the particulate carbon variables. Such an approach had been successfully applied previously and provided improved source resolution in simulated and ambient concentration data. Initially, total OC and EC were used in the expanded model and were compared to the results using conventional positive matrix factorization that had been done previously using the individual carbon fractions data. In the other expanded model analysis, the eight carbon fractions were used during the modeling in order to ascertain if additional source information could be extracted from the data. In both cases, it was possible to separate diesel from spark-ignition vehicles. The use of the individual carbon fractions in the model provides information on what appears to be secondary organic aerosol formation.  相似文献   

4.
Individual organic compounds found in particulate emissions from vehicles have proven useful in source apportionment of ambient particulate matter. Species of interest include the hopanes, originating in lube oil, and selected PAHs generated via combustion. Most efforts to date have focused on emissions and apportionment PM10 or PM2.5 However, examining how these compounds are segregated by particle size in both emissions and ambient samples will help efforts to apportion size-resolved PM, especially ultrafine particles which have been shown to be more potent toxicologically. To this end, high volume size-resolved (coarse, accumulation, and ultrafine) PM samples were collected inside the Caldecott tunnel in Orinda, California to determine the relative emission factors for these compounds in different size ranges. Sampling occurred in two bores, one off-limits to heavy-duty diesel vehicles, which allows determination of the different emissions profiles for diesel and gasoline vehicles. Although tunnel measurements do not measure emissions over a full engine duty cycle, they do provide an average emissions profile over thousands of vehicles that can be considered characteristic of "freeway" emissions. Results include size-fractionated emission rates for hopanes, PAHs, elemental carbon, and other potential organic markers apportioned to diesel and gasoline vehicles. The results are compared to previously conducted PM2.5 emissions testing using dynamometer facilities and othertunnel environments.  相似文献   

5.
A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the concentrations of 1,2-benzenedicarboxylic acid in the atmospheric fine particle mass, indicating that aromatic diacids may be useful in the quantification of certain sources of secondary organic aerosol in the atmosphere.  相似文献   

6.
Secondary airborne particulate matter formed from gas-phase pollutants contributes significantly to the most severe particulate air quality events that occur in the United States each year. In this study, a mechanistic air quality model is demonstrated that can predict source contributions to the size distribution of secondary airborne particulate matter. Calculations performed for a typical air quality episode in Southern California show that NOx released from diesel engines and catalyst-equipped gasoline engines account for the majority of the secondary particulate nitrate aerosol measured at inland locations. NH3 released from catalyst-equipped gasoline engines, farm animals, and residential sources account for the majority of the secondary particulate ammonium ion at inland locations in the region. When both tailpipe and road dust emissions are considered, transportation sources dominate the size distribution of total (primary plus secondary) airborne particulate matter in the South Coast Air Basin during the episode studied. These findings suggest that the public health risk associated with air pollution released from transportation sources is significant relative to other public health threats such as traffic accidents.  相似文献   

7.
Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.  相似文献   

8.
Emissions from gasoline and diesel engines vary on time scales including diurnal, weekly, and decadal. Temporal patterns differ for these two engine types that are used predominantly for passenger travel and goods movement, respectively. Rapid growth in diesel fuel use and decreasing NOx emission rates from gasoline engines have led to altered emission profiles. During the 1990s, on-road use of diesel fuel grew 3 times faster than gasoline. Over the same time period, the NOx emission rate from gasoline engines in California was reduced by a factor of approximately 2, while the NOx emission rate from diesel engines decreased only slightly. Diesel engines therefore grew in both relative and absolute terms as a source of NOx, accounting for about half of all on-road NO, emissions as of 2000. Diesel truck emissions decrease by 60-80% on weekends. Counterintuitive responses to these emission changes are seen in measured concentrations of ozone. In contrast, elemental carbon (EC) concentrations decrease on weekends as expected. Weekly and diurnal patterns in diesel truck activity contribute to variability in the ratio of organic carbon (OC) to EC in primary source emissions, and this could be a source of bias in assessments of the importance of secondary organic aerosol.  相似文献   

9.
Gaseous and particulate emissions from prescribed burning in Georgia   总被引:1,自引:0,他引:1  
Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.  相似文献   

10.
Concentrations of elemental carbon (EC), organic carbon matter (OM), particulate matter less than 2.5 microm (PM2.5), reconstructed soil, trace element oxides, and sulfate are reported from four locations near the World Trade Center (WTC) complex for airborne particulate matter (PM) samples collected from September 2001 through January 2002. Across the four sampling sites, daily mean concentrations ranged from 1.5 to 6.8 microg/m3 for EC, from 10.2 to 31.4 microg/m3 for OM, and from 22.6 to 66.2 microg/m3 for PM2.5. Highest concentrations of PM species were generally measured north and west of the WTC complex. Total carbon matter and sulfate constituted the largest fraction of reconstructed PM2.5 concentrations. Concentrations of PM species across all sites decreased from the period when fires were present at the WTC complex (before December 19, 2001) to the period after the fires. Averaged over all sites, concentrations decreased by 25.6 microg/m3 for PM2.5, 2.7 microg/m3 for EC, and 9.2 microg/m3 for OM from the fire period to after fire period.  相似文献   

11.
Time-resolved ambient particulate organic (OC) and elemental carbon (EC) data measured in Atlanta, GA, during the Atlanta Supersite Experiment (August3-September 1, 1999) were investigated to determine the temporal trends of atmospheric carbonaceous aerosol and to examine the relative contributions of primary and secondary OC to measured particulate OC. Mean 1-h average concentrations (ranges in parentheses) of PM2.5 OC, EC, and total carbon were 8.3 (3.6-15.8), 2.3 (0.3-9.6), and 10.6 (4.6-24.6) microg of C m(-3), respectively, based on Rutgers University/Oregon Graduate Institute in situ thermal-optical carbon analyzer measurements. Carbonaceous matter (organic material 40%; EC 8%) comprised approximately 48% of PM2.5 mass in Atlanta. Primary and secondary OC concentrations were estimated using an EC tracer method. Secondary OC contributed approximately 46% of measured particulate OC, and 1-h average contributions ranged up to 88%. Vehicle emissions appear to be the dominant contributors to measured EC and primary OC concentrations based on temporal patterns of EC, primary OC, and CO. This research suggests that secondary OC concentrations in Atlanta were influenced by (1) "fresh" secondary organic aerosol formed by photochemical reactions locally in the early afternoons as seen in the Los Angeles air basin and (2) "aged" secondary organic aerosol transported from upwind regions or formed on previous days. Nocturnal peaks in secondary OC and ozone concentrations were observed on several days. The most probable explanation for this is the favorable partitioning of semivolatile organic compounds to the particulate phase driven by temperature decreases and relative humidity increases at night and vertical transport of regional pollutants from above to ground level.  相似文献   

12.
The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.  相似文献   

13.
New Mining Safety and Health Administration (MSHA) regulations limit the mass concentration of airborne diesel particulate matter (DPM) or, more specifically, the concentration of elemental carbon (EC), in underground mines. The mine operators are responding by introducing a variety of controls to reduce DPM in the mines, potentially including the evaluation of new maintenance procedures to reduce underground mine vehicle emissions. There is currently a lack of an inexpensive and dependable method to directly measure the DPM concentration emitted from the vehicle tailpipe. To that end, this work demonstrated a simple field portable method for estimating the mass concentration of elemental carbon exiting the tailpipe of a diesel engine using a direct reading photometer. Simultaneous measurements of tailpipe exhaust were made with a Thermo Electron Personal DataRAM 1200 photometer (particulate mass concentration based on light scattering) and by analyzing PM2.5 and PM1.0 samples collected on quartz fiber filters using the National Institute of Occupational Safety and Health (NIOSH) method 5040 (mass concentration of EC via thermal-optical method). Results indicate surprisingly good correlation (R2 = 0.97) of the two methods when the data are adjusted for relative humidity (RH) and corrected using an empirically generated calibration factor. Although preliminary, it may be possible to implement this method in maintenance shops to monitor emission trends and to compare emissions of various vehicles in a fleet. Such data will be useful for fleet planning to meet new air quality standards.  相似文献   

14.
The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife Refuge (NWR) in northern Michigan. Detailed analysis of particle-phase organic compounds revealed very low concentrations of primary anthropogenic emissions and relatively high levels of organic di-, tri-, and tetracarboxylic acids thought to be indicators of secondary organic aerosols. Seasonal changes in these organic compounds were tracked by analyzing composites of monthly average samples. The concentration of aromatic and aliphatic dicarboxylic acids peak in July and taper off in the fall, which coincides with fine particle organic carbon concentration. In contrast, a chemical mass balance model used to quantify primary sources of particulate matter shows higher contributions from primary emissions in the winter. Complementing the monthly average concentrations, event-based composites of high volume samples were used to track the different species of secondary organic aerosol at the Seney NWR location. The distribution of aliphatic diacids and the aromatic di- and triacids varied with different atmospheric conditions, which suggests different precursor gases for these secondary organic aerosol components. The aliphatic diacid concentrations track with ambient concentrations of particle-phase pinonic acid. In addition, back-trajectories for the eight event-based composites are compared to the organic acid distributions and are linked to the distribution of organic acids present in the composites.  相似文献   

15.
We measured the size distribution and UV extinction spectra of carbonaceous nanoparticles present in the size range of 1-100 nm in the exhausts of 2004 model gasoline and diesel powered vehicles and compared the results with those obtained in premixed flames. In addition to soot particles, nanoparticles of organic carbon (NOC) were measured in the emissions of these test vehicles in significant number and mass concentrations. The number and mass concentration of NOC was higher than soot in gasoline vehicle emissions. In diesel emissions, NOC had a higher number concentration than soot in terms of number concentration, but in terms of mass concentration, soot was higher than NOC. The size (1-3 nm) and extinction spectra in the UV-visible (strong in the UV and transparent in the visible) of macromolecules/nanoparticles collected in water samples from the vehicles are similar to those measured in laboratory hydrocarbon-air flames, suggesting that these nanoparticles are formed in hydrocarbon combustion reactions. We advance the hypothesis that NOC in vehicle emissions are produced by high-temperature combustion processes and not by low-temperature condensation processes.  相似文献   

16.
Airborne particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in six size fractions < 1.8 microm particle diameter at one site upwind and two sites downwind of the Interstate 5 freeway in San Diego, CA. The smallest size fraction collected was exclusively in the ultrafine size range (D(p) < 0.1 microm; PM0.1). Size distributions of hopanes, steranes, and PAHs peaked between 0.10-0.18 microm particle aerodynamic diameter with a tail extending into the PM0.1 size range. This pattern is similar to previous dynamometer studies of hopane, sterane, and PAH size distributions emitted from gasoline- and diesel-powered vehicles. Size-resolved source profiles were combined to form an "on-road" profile for motor oil, diesel, and gasoline contributions to EC and OC. The resulting equations were used to predict source contributions to the size distributions of EC and OC in the roadside environment. The method successfully accounted for the majority of the carbonaceous material in particles with diameter < 0.18 microm, with significant residual material in larger size fractions. The peak in both the measured and predicted EC size distribution occurred between 0.1-0.18 microm particle aerodynamic diameter. The predicted OC size distribution peaked between 0.1-0.18 microm particle diameter, butthe measured OC size distribution peaked between 0.56-1.0 microm particle diameter, possibly because of secondary organic aerosol formation. Predicted OC concentrations in particles with diameter < 0.18 microm were greater than measured values 18 m downwind of the roadway but showed good agreement 37 m downwind. The largest source contributions to the PM0.1 and PM0.18 size fractions were different. PM0.18 was dominated by diesel fuel and motor oil combustion products while PM0.1 was dominated by diesel fuel and gasoline fuel combustion products. Total source contributions to ultrafine (PM0.1) EC concentrations 37 m downwind of the roadway were 44 +/- 6% diesel fuel, 21 +/- 1% gasoline, 5 +/- 6% motor oil, and 30% unknown. Total source contributions to ultrafine (PM0.1) OC concentrations 37 m downwind of the roadway were 46 +/- 5% diesel fuel, 44 +/- 5% gasoline, 20 +/- 15% motor oil with a slight overprediction (11%). Diesel fuel appears to make the single largest contribution to ultrafine (PM0.1) particle mass given the fleet distribution during the current experiment.  相似文献   

17.
Samples of fine particulate matter were collected in a roadway tunnel near Houston, TX over a period of 4 days during two separate sampling periods: one sampling period from 1200 to 1400 local time and another sampling period from 1600 to 1800 local time. During the two sampling periods, the tunnel traffic contained roughly equivalent numbers of heavy-duty diesel trucks. However, during the late afternoon sampling period, the tunnel contained twice as many light-duty gasoline-powered vehicles. The effect of this shift in the vehicle fleet affects the overall emission index (grams pollutant emitted per kilogram carbon in fuel) for fine particles and fine particulate elemental carbon. Additionally, this shift in the fraction of diesel vehicles in the tunnel is used to determine if the chemical mass balancing techniques used to track emissions from gasoline-powered and diesel-powered emissions accurately separates these two emission categories. The results show that the chemical mass balancing calculations apportion roughly equal amounts of the particulate matter measured to diesel vehicles between the two periods and attribute almost twice as much particulate matter in the late afternoon sampling period to gasoline vehicles. Both of these results are consistent with the traffic volume of gasoline and diesel vehicles in the tunnel in the two separate periods and validate the ability for chemical mass balancing techniques to separate these two primary sources of fine particles.  相似文献   

18.
Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.  相似文献   

19.
Individual organic compounds often referred to as molecular markers are used in conjunction with the chemical mass balance (CMB) model to apportion sources of primary organic aerosol. This paper presents a methodology to visualize molecular marker data; it allows comparison of ambient data and source profiles and allows assessment of chemical stability and aging. The method is intended to complement traditional quantitative source apportionment analysis. The core of the technique involves construction of plots of ratios of species concentrations (ratio-ratio plots) in which source profiles appear as points connected by linear mixing lines. The approach is illustrated using data collected over a 1-year period in Pittsburgh, Pennsylvania. The analysis considers for elemental carbon and a number of high molecular weight polycyclic aromatic hydrocarbons (PAHs) commonly used as molecular markers in CMB: benzo(b+j+k)fluoranthene, benzo(e)pyrene, benzo[g,h,i]perylene, coronene, and indeno(1,2,3-cd)pyrene. In Pittsburgh, the ambient concentrations of these PAHs are higher than in other cities in the United States; they are also strongly correlated consistent with a single, dominant source. Both ratio-ratio plots and CMB analysis indicate that this source is metallurgical coke production. Although emissions from coke production dominate ambient PAH concentrations, on most study days they contributed little fine particle mass. Ratio-ratio plots are then used to investigate the feasibility of using PAHs to help differentiate between gasoline and diesel vehicle emissions. Ambient concentrations of these large PAHs provide little information on the gasoline-diesel split because of the strong influence of local emissions from coke production combined with evidence of photochemical decay of PAHs in the regional air mass. Decay of PAHs will bias estimates of the gasoline-diesel split toward diesel emissions.  相似文献   

20.
Fine particle emissions from on-road vehicles in the Zhujiang Tunnel, China   总被引:4,自引:0,他引:4  
Little is known about the characteristics of particulate matter emissions from vehicles in China, although such information is critical in source apportionment modeling, emission inventories, and health effect studies. In this paper, we report a comprehensive characterization of PM2.5 emissions in the Zhujiang Tunnel in the Pearl River Delta region of China. The chemical speciation included elemental carbon, organic carbon, inorganic ions, trace elements, and organic compounds. The emission factors of individual species and their relative distributions were obtained for a mixed fleet of heavy-duty vehicles (19.8%) and light-duty vehicles (80.2%). In addition, separate emission factors of PM2.5 mass, elemental carbon, and organic matter for heavy-duty vehicles and light-duty vehicles also were derived. As compared to the results of other tunnel studies previously conducted, we found that the abundances and distributions of the trace elements in PM2.5 emissions were more varied. In contrast, the characteristics of the trace organic compounds in the PM2.5 emissions in our study were consistent with characteristics found in other tunnel studies and dynamometer tests. Our results suggested that vehicular PM2.5 emissions of organic compounds are less influenced by the geographic area and fleet composition and thereby are more suitable for use in aerosol source apportionment modeling implemented across extensive regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号