首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Truss shape and sizing optimization under frequency constraints is extremely useful when improving the dynamic performance of structures. However, coupling of two different types of design variables, nodal coordinates and cross-sectional areas, often lead to slow convergence or even divergence. Because shape and sizing variables coupled increase the number of design variables and the changes of shape and sizing variables are of widely different orders of magnitude. Otherwise, multiple frequency constraints often cause difficult dynamic sensitivity analysis. Thus optimal criteria and mathematical programming methods have considerable limitations on solving the problems because of needing complex dynamic sensitivity analysis and being easily trapped into the local optima. Genetic Algorithms (GAs) show great potentials to solve the truss shape and sizing optimization problems. Since GAs adopt global probabilistic population search techniques and require no gradient information. The improved genetic algorithms can effectively increase the solution quality. However, the serial GA is computationally expensive and is limited on gaining higher quality solutions. To solve the truss shape and sizing optimization problems with frequency constraints more effectively and efficiently, a Niche Hybrid Parallel Genetic Algorithm (NHPGA) is proposed to significantly reduce the computational cost and to further improve solution quality. The NHPGA is to blend the advantages of parallel computing, simplex search and genetic algorithm with niche technique. Several typical truss optimization examples demonstrate that NHPGA can significantly reduce computing time and attain higher quality solutions. It also suggests that the NHPGA provide a potential algorithm architecture, which effectively combines the robust and global search characteristics of genetic algorithm, strong exploitation ability of simplex search and computational speedup property of parallel computing.  相似文献   

2.
This paper presents a method for optimal sizing of truss structures based on a refined self-adaptive step-size search (SASS) algorithm. An elitist self-adaptive step-size search (ESASS) algorithm is proposed wherein two approaches are considered for improving (i) convergence accuracy, and (ii) computational efficiency. In the first approach an additional randomness is incorporated into the sampling step of the technique to preserve exploration capability of the algorithm during the optimization. Furthermore, an adaptive sampling scheme is introduced to enhance quality of the final solutions. In the second approach computational efficiency of the technique is accelerated through avoiding unnecessary analyses throughout the optimization process using the so-called upper bound strategy (UBS). The numerical results indicate the efficiency of the proposed ESASS algorithm.  相似文献   

3.
This paper applies multi-population differential evolution (MPDE) with a penalty-based, self-adaptive strategy—the adaptive multi-population differential evolution (AMPDE)—to solve truss optimization problems with design constraints. The self-adaptive strategy developed in this study is a new adaptive approach that adjusts the control parameters of MPDE by monitoring the number of infeasible solutions generated during the evolution process. Multiple different minimum weight optimization problems of the truss structure subjected to allowable stress, deflection, and kinematic stability constraints are used to demonstrate that the proposed algorithm is an efficient approach to finding the best solution for truss optimization problems. The optimum designs obtained by AMPDE are better than those found in the current literature for problems that do not violate the design constraints. We also show that self-adaptive strategy can improve the performance of MPDE in constrained truss optimization problems, especially in the case of simultaneous optimization of the size, topology, and shape of truss structures.  相似文献   

4.
This paper describes teaching learning based optimization (TLBO) algorithm to solve multi-objective optimal power flow (MOOPF) problems while satisfying various operational constraints. To improve the convergence speed and quality of solution, quasi-oppositional based learning (QOBL) is incorporated in original TLBO algorithm. The proposed quasi-oppositional teaching learning based optimization (QOTLBO) approach is implemented on IEEE 30-bus system, Indian utility 62-bus system and IEEE 118-bus system to solve four different single objectives, namely fuel cost minimization, system power loss minimization and voltage stability index minimization and emission minimization; three bi-objectives optimization namely minimization of fuel cost and transmission loss; minimization of fuel cost and L-index and minimization of fuel cost and emission and one tri-objective optimization namely fuel cost, minimization of transmission losses and improvement of voltage stability simultaneously. In this article, the results obtained using the QOTLBO algorithm, is comparable with those of TLBO and other algorithms reported in the literature. The numerical results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal non-dominated solutions of the multi-objective OPF problem. The simulation results also show that the proposed approach produces better quality of the individual as well as compromising solutions than other algorithms.  相似文献   

5.
已有的聚类算法大多仅考虑单一的目标,导致对某些形状的数据集性能较弱,对此提出一种基于改进粒子群优化的无标记数据鲁棒聚类算法。优化阶段:首先,采用多目标粒子群优化的经典形式生成聚类解集合;然后,使用K-means算法生成随机分布的初始化种群,并为其分配随机初始化的速度;最终,采用MaxiMin策略确定帕累托最优解。决策阶段:测量帕累托解集与理想解的距离,将距离最短的帕累托解作为最终聚类解。对比实验结果表明,本算法对不同形状的数据集均可获得较优的类簇数量,对目标问题的复杂度具有较好的鲁棒性。  相似文献   

6.
The optimal sizing design of truss structures is studied using the recently proposed particle swarm optimization algorithm (PSOA). The algorithm mimics the social behavior of birds. Individual birds in the flock exchange information about their position, velocity and fitness, and the behavior of the flock is then influenced to increase the probability of migration to regions of high fitness. A simple approach is presented to accommodate the stress and displacement constraints in the initial stages of the swarm searches. Increased social pressure, at the cost of cognitive learning, is exerted on infeasible birds to increase their rate of migration to feasible regions. Numerical results are presented for a number of well-known test functions, with dimensionality of up to 21.  相似文献   

7.
In view of the shortcomings such as slow search speed, low optimization precision and premature convergence of artificial hummingbird algorithm, an enhanced artificial hummingbird algorithm based on golden sine factor named DGSAHA is proposed. Firstly, chaos mapping is used to generate the initial candidate solution to increase the diversity of the population, which lays the foundation for the global search. Then, perturb the individuals by means of the differential variation between individuals on the group, thereby enhancing the diversity of the population, preserving the excellent individuals, eliminating the inferior individuals, and guiding the search process to approach the global optimal solution, avoiding the phenomenon of premature convergence. Finally, the golden sine factor were introduced in the guided foraging stage is conducive to the full exploration of the global optimal solution, reducing the search space for individuals to approach the optimal solution. And, it facilitates the balance between “exploration” and “exploitation” of algorithm. Thereby, the accuracy and speed of the DGSAHA can be improved to a certain extent. 25 classic functions, the CEC2014 and CEC2019 benchmark functions were tested, and several representative meta-heuristic algorithms and its improved algorithm are compared for evaluate the validity of DGSAHA. Meanwhile, the dimensional scalability of the variable-dimensional test function is discussed. The results of non-parametric statistical analysis and performance index show that DGSAHA in this paper has better comprehensive optimization performance, significantly improves the search speed and convergence precision, and has strong ability to get rid of the local optimal solution. Finally, the performance of DGSAHA and the practicability of truss structure are answered by three engineering examples of plane and space truss topology optimization problem. This optimization problem considers not only the static constraints such as stress, displacement and buckling, but also the dynamic constraints of frequency and motion stability. In order to avoid singularity and unnecessary analysis, the stiffness, mass and load matrices are reconstructed in finite element analysis. A lighter truss structure than the existing solution is obtained. The validity, extensibility and practicability of the algorithm are further illustrated.  相似文献   

8.
We propose a two-stage robust optimization model for the mobile facility fleet sizing and routing problem with demand uncertainty. A two-level cutting plane based method is developed, which includes an algorithm to generate problem-specific lower bound inequalities in the outer level, and a hybrid algorithm in the inner level that combines heuristic and exact methods to solve the recourse problem. Numerical tests show that the design and operation from the proposed method outperforms other solution approaches. The efficiency of the proposed solution algorithm in identifying the optimal solution is quantified and the robustness of the proposed model is demonstrated for varying degrees of uncertainty in demand.  相似文献   

9.
This paper describes an innovative optimization approach that offers significant improvements in performance over existing methods to solve shape optimization problems. The new approach is based on two-stages which are (1) Taguchi's robust design approach to find appropriate interval levels of design parameters (2) Immune algorithm to generate optimal solutions using refined intervals from the previous stage. A benchmark test problem is first used to illustrate the effectiveness and efficiency of the approach. Finally, it is applied to the shape design optimization of a vehicle component to illustrate how the present approach can be applied for solving shape design optimization problems. The results show that the proposed approach not only can find optimal but also can obtain both better and more robust results than the existing algorithm reported recently in the literature.  相似文献   

10.
Structural optimization with frequency constraints is a challenging class of optimization problems characterized by highly non-linear and non-convex search spaces. When using a meta-heuristic algorithm to solve a problem of this kind, exploration/exploitation balance is a key feature to control the performance of the algorithm. An excessively exploitative algorithm might focus on certain areas of the search space ignoring the others. On the other hand, an algorithm that is too explorative overlooks high quality solutions as a result of not performing adequate local search.This paper compares nine multi-agent meta-heuristic algorithms for sizing and layout optimization of truss structures with frequency constraints. The variation of the diversity index during the optimization history is analyzed in order to inspect exploration/exploitation properties of each algorithm. It appears that there is a significant relationship between the algorithm efficiency and the evolution of the diversity index.  相似文献   

11.
One aspect that is often disregarded in the current research on evolutionary multiobjective optimization is the fact that the solution of a multiobjective optimization problem involves not only the search itself, but also a decision making process. Most current approaches concentrate on adapting an evolutionary algorithm to generate the Pareto frontier. In this work, we present a new idea to incorporate preferences into a multi-objective evolutionary algorithm (MOEA). We introduce a binary fuzzy preference relation that expresses the degree of truth of the predicate “x is at least as good as y”. On this basis, a strict preference relation with a reasonably high degree of credibility can be established on any population. An alternative x is not strictly outranked if and only if there does not exist an alternative y which is strictly preferred to x. It is easy to prove that the best solution is not strictly outranked. For validating our proposed approach, we used the non-dominated sorting genetic algorithm II (NSGA-II), but replacing Pareto dominance by the above non-outranked concept. So, we search for the non-strictly outranked frontier that is a subset of the Pareto frontier. In several instances of a nine-objective knapsack problem our proposal clearly outperforms the standard NSGA-II, achieving non-outranked solutions which are in an obviously privileged zone of the Pareto frontier.  相似文献   

12.
This paper gives attention to multi-objective optimization in scenarios where objective function evaluation is expensive, that is, expensive multi-objective optimization. We firstly propose a cluster-based neighborhood regression model, which incorporates the linear regression technique to predict the descent direction and generate new potential offspring. Combining this model with the classical decomposition-based multi-objective optimization framework, we propose an efficient and effective algorithm for tackling computationally expensive multi-objective optimization problems. As opposed to the conventional approach of replacing the original time-consuming objective functions with the approximated ones obtained by surrogate model, the proposed algorithm incorporates the proposed regression model to serve as an operator producing higher-quality offspring so that the algorithm requires fewer iterations to reach a given solution quality. The proposed algorithm is compared with several state-of-the-art surrogate-assisted algorithms on a variety of well-known benchmark problems. Empirical results demonstrate that the proposed algorithm outperforms or is competitive with other peer algorithms, and has the ability to keep a good trade-off between solution quality and running time within a fairly small number of function evaluations. In particular, our proposed algorithm shows obvious superiority in terms of the computational time used for the algorithm components, and can obtain acceptable solutions for expensive problems with high efficiency.  相似文献   

13.
A population-based algorithm-generator for real-parameter optimization   总被引:1,自引:1,他引:0  
In this paper, we propose a population-based, four-step, real-parameter optimization algorithm-generator. The approach divides the task of reaching near the optimum solution into four independent plans of (i) selecting good solutions from a solution base, (ii) generating new solutions using the selected solutions, (iii) choosing inferior or spurious solutions for replacement, and (iv) updating the solution base with good new or old solutions. Interestingly, many classical and evolutionary optimization algorithms are found to be representable by this algorithm-generator. The paper also recommends an efficient optimization algorithm with the possibility of using a number of different recombination plans and parameter values. With a systematic parametric study, the paper finally recommends a real-parameter optimization algorithm which outperforms a number of existing classical and evolutionary algorithms. To extend this study, the proposed algorithm-generator can be utilized to develop new and more efficient population-based optimization algorithms. The treatment of population-based classical and evolutionary optimization algorithms identically through the proposed algorithm-generator is the main hall-mark of this paper and should enable researchers from both classical and evolutionary fields to understand each others methods better and interact in a more coherent manner.  相似文献   

14.
现有移动群智感知系统的任务指派主要面向单一类型移动用户展开,对于存在多种类型移动用户的异构群智感知任务指派研究相对缺乏.为此,针对异质移动用户,定义其区域可达性,并给出感知子区域类型划分.进而,兼顾感知任务数量和移动用户规模的时变性,构建了动态异构群智感知系统任务指派的多目标约束优化模型.模型以最大化感知质量和最小化感知成本为目标,综合考虑用户的最大任务执行数量、无人机的受限工作时间等约束.为解决该优化问题,提出一种基于近端策略优化的多目标进化优化算法.采用近端策略优化,根据种群的当前进化状态,选取具有最高奖励值的进化算子,生成子代种群.面向不同异构群智感知实例,与多种算法的对比实验结果表明,所提算法获得的Pareto最优解集具有最佳的收敛性和分布性,进化算子选择策略可以有效提升对时变因素的适应能力,改善算法性能.  相似文献   

15.
This paper introduces a new evolutionary algorithm with a globally stochastic but locally heuristic search strategy. It is implemented by incorporating a modified micro-genetic algorithm with two local optimization operators. Performance tests using two benchmarking functions demonstrate that the new algorithm has excellent convergence performance when applied to multimodal optimization problems. The number of objective function evaluations required to obtain global optima is only 3.5–3.7% of that of using the conventional micro-genetic algorithm. The new algorithm is used to optimize the design of an 18-bar truss, with the aim of minimizing its weight while meeting the stress, section area, and geometry constraints. The corresponding optimal design is obtained with considerably fewer computational operations than required for the existing algorithms.  相似文献   

16.
This paper develops a fully distributed hybrid control framework for distributed constrained optimization problems. The individual cost functions are non-differentiable and convex. Based on hybrid dynamical systems, we present a distributed state-dependent hybrid design to improve the transient performance of distributed primal-dual first-order optimization methods. The proposed framework consists of a distributed constrained continuous-time mapping in the form of a differential inclusion and a distributed discrete-time mapping triggered by the satisfaction of local jump set. With the semistability theory of hybrid dynamical systems, the paper proves that the hybrid control algorithm converges to one optimal solution instead of oscillating among different solutions. Numerical simulations illustrate better transient performance of the proposed hybrid algorithm compared with the results of the existing continuous-time algorithms.   相似文献   

17.
Most of the conventional design methods of large-scale domes need deep engineering insight; furthermore, they hardly give the most economical solutions. Therefore, in this paper, a new practical design algorithm is presented to automate optimal geometry and sizing design of the latticed space domes through the idea of using parametric mathematical functions. Moreover, a simple approach is developed for the optimal sizing design of trusses with outsized number of elements. The robust technique of particle swarm optimization is employed to find the solution of the propounded optimization problem. Some numerical examples on the minimum weight design of several famous domes are provided to demonstrate the efficiency of the proposed design algorithm.  相似文献   

18.
多目标优化的日标在于使得解集能够快速的逼近真实Pareto前沿.针对解的分布性问题,以免疫克隆算法为框架,引入适应度共享策略,提出了一种新的具有良好分布性保持的多目标优化进化算法;算法建立外部群体以保存非支配解,以Pareto优和共亨适应度作为外部群体更新与激活抗体选择的双重标准.为了增强算法对决策空间的开发能力,引入...  相似文献   

19.
Effective task assignment is essential for achieving high performance in heterogeneous distributed computing systems. This paper proposes a new technique for minimizing the parallel application time cost of task assignment based on the honeybee mating optimization (HBMO) algorithm. The HBMO approach combines the power of simulated annealing, genetic algorithms, and an effective local search heuristic to find the best possible solution to the problem within an acceptable amount of computation time. The performance of the proposed HBMO algorithm is shown by comparing it with three existing task assignment techniques on a large number of randomly generated problem instances. Experimental results indicate that the proposed HBMO algorithm outperforms the competing algorithms.  相似文献   

20.
During the last three decades,evolutionary algorithms(EAs) have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with spa...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号