共查询到19条相似文献,搜索用时 125 毫秒
1.
QFN封装芯片体积小、重量轻,它特殊的底部PAD能有有效的散热,具有卓越的电性能和热性能[1]。然而如果芯片管脚与芯片散热PAD存在内部短路的问题时,在FT测试将无法准确的筛选出来。部分芯片在终端客户无法正常使用从而引发客户投诉和质量问题。针对此问题,对FT测试方案在硬件设计上进行了优化改善,能够准确的筛选出封装异常芯片。 相似文献
2.
总结当前QFN封装芯片切割分离方式的优缺点,从QFN封装器件材料特性出发,提出一种砂轮切割技术,并通过QFN芯片切割实验,探索能有效抑制铜材料特有毛刺发生的工艺条件。 相似文献
3.
使用红外热像仪对未切割分离的QFN封装在40~200℃进行了塑封料面、铜面和缝表面发射率的标定,并分别利用上述三面对实验环境的空气透射率进行了标定。结果表明:直接计算法和直接调节法可以很好地应用于塑封料发射率标定,直接计算法可以应用在缝处、铜面发射率标定。塑封料发射率标定结果在0.97左右;缝处发射率标定值随着温度升高由0.17~0.35呈线性递增趋势变化;铜面发射率标定值随温度升高出现先稳定后增大趋势。塑封料面、铜及缝处对空气透射率标定值在100%左右,上下波动不超过2%。该实验结果可为红外热像仪测定QFN的使用温度及切割分离时的温度提供相应参数。 相似文献
4.
史建卫 《电子工业专用设备》2015,(2):21-30
QFN封装由于具有良好的电和热性能、体积小、质量轻,在电子产品中被越来越广泛的推广和应用,针对QFN封装元件PCB焊盘设计、焊膏印刷网板开孔设计、贴装工艺、焊接工艺及返修工艺进行了阐述。 相似文献
5.
6.
7.
LED封装中的散热研究 总被引:3,自引:1,他引:3
文章论述了大功率LED封装中的散热问题,说明它对器件的输出功率和寿命有很大的影响,分析了小功率、大功率LED模块的封装中的散热对光效和寿命的影响。对封装及应用而言,增强它的散热能力是关键技术,指出对大功率LED和LED模块散热设计很重要,因为大功率白光LED的光效和寿命取决于其散热。目前大功率LED的重点是提高散热能力,说明封装结构和封装材料在提高大功率LED散热中的影响,LED模块的散热是未来的重点。通过选用高热导率材料可以使温度得到显著控制,重点论述了封装的关键技术,最后指出了未来LED封装技术的发展趋势。 相似文献
8.
Sally Cole Johnson 《集成电路应用》2008,(6):38-38
Amkor最近推出了“整合四边封装技术”,这是一种基于引线框架的塑料封装技术平台,融合了无引线四边扁平封装(QFN)和薄四边扁平封装(TQFP)两种技术。有趣的是,这种方法消除了过去外围引线结构的引脚数限制,可将标准引线框架封装的外围I/O接口数增大两倍,接近400个分离引脚——同时,对于特定的引脚数,该方法也缩减了50%的封装面积。其基本思想是,将标准外围引线有选择地与一排或两排内部焊盘相结合。 相似文献
9.
10.
11.
12.
13.
介绍了方形扁平无引脚封装(QuadFaltNo-leadPackage,QFN)的特点、分类、工艺要点和返修。 相似文献
14.
QFN封装元件组装工艺技术的研究 总被引:1,自引:0,他引:1
QFN(Quad Flat No-lead Package,方形扁平无引脚封装)是一种焊盘尺寸小、体积小、 以塑料作为密封材料的新兴表面贴装芯片封装技术。由于底部中央大暴露焊盘被焊接到PCB的散热焊 盘上,这使得QFN具有极佳的电和热性能。QFN封装尺寸较小,有许多专门的焊接注意事项。文章 介绍了QFN的特点、分类、工艺要点和返修。 相似文献
15.
利用动态机械分析仪测定环氧模塑封(EMC)材料随温度变化的杨氏模量;使用热机械分析仪测定EMC随温度变化的尺寸变化量,并拟合得到热膨胀系数。在实验数据的基础上,变动EMC的橡胶态杨氏模量、玻璃态杨氏模量、玻璃转化温度以及热膨胀系数,并使用有限元软件MSC Marc分别模拟其热应力,以此来分析材料特性参数对热应力的影响。结果表明:QFN器件的最大热应力出现在芯片、粘结剂和EMC的连接处;减小橡胶态或玻璃态的杨氏模量可以有效地减小热应力;增大玻璃转化温度或热膨胀系数,QFN器件的热应力都会有所增加。 相似文献
16.
牛利刚 《电子工业专用设备》2009,38(8):46-50
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力.热应力是导致微电子封装器件失效的主要原因之一。采用MSC.Marc有限元软件.分析了QFN器件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验设计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处:主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处.其值分别为21.42MPa和-28.47MPa:由析N实验设计可知粘结剂厚度对QFN热应力的影响最大。 相似文献
17.
18.