首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
贮氢合金粉末粒度对其电化学性能的影响   总被引:2,自引:0,他引:2  
唐有根  王勇  杨幼平 《电池》2002,32(6):320-322
研究考察了粉末粒度对贮氢合金Ml(Ni3 75Co0 60 Mn0 40 Al0 2 5)电极电化学性能的影响。结果表明 :在不同粒度范围内 ,合金粉的平均粒径越大 ,其 0 2C、1C及 2C放电容量越高 ,达到最高容量的活化次数越少。对于混合合金粉 ,3 7μm以下贮氢合金粉的质量含量为 10 %时 ,其 0 2C、1C及 2C放电容量达到最高值 ,但其达到最高容量的活化次数随着混合合金粉中 3 7μm以下贮氢合金粉的含量的增大而增多。  相似文献   

2.
李克杰  李全安  李守英 《电池》2006,36(1):48-49
在AB5型贮氢合金MlNi3.55Co0.75Mn0.4Al0.3成分的基础上,采用合金B侧Cu、Fe、Zn和Cr替代Co,A侧加入稀土元素镝(Dy)的方法制备低Co贮氢合金,测试了合金的电化学性能。随Dy的加入,合金的活化次数由4次上升到15次,最大放电容量由303.1 mAh/g降至271.7 mAh/g,但循环寿命提高。  相似文献   

3.
本文用化学处理和化学镀镍对金属氢化物的表面改性处理,初步讨论和分析了这些处理对金属氢化物电极的活化和容量等性能的影响。其结果表明:表面改性后的贮氢电极放电容量提高,放电特性增强。  相似文献   

4.
采用气体雾化工艺制备了RE(NiAlCu) 5-x(x =0 .1,0 .5 )两种微晶贮氢合金粉末 ,研究了粒度对合金粉末的微观组织结构及电化学性能的影响。结果表明 :随着合金粉末粒度的减小 ,RE(NiAlCu) 4.9合金的电化学容量降低 ,活化次数增加 ;而RE(NiAlCu) 4.5合金的电化学容量及活化次数无显著变化。复相微结构的形成是导致以上合金粉末性能特性的主要因素  相似文献   

5.
研究了cu含量(x)对低钴贮氢合金M1Ni4.0-xCo0.4Mn0.3Al0.3Cux(x=0、0.1、O.2、0.3和0.4)动力学性能的影响.随着x的增大,合金电极的放电比容量和高倍率放电能力减小.随着x从0增加到0.4,合金电极的活化次数从2次增加到13次;电荷转移电阻从0.40 Ω增加到0.94 Ω;交换电流从293.1 mA/g减少到214.0 mA/g;极限电流由3 071.6 mA/g降低到992.0 mA/g.电位阶跃结果显示,随着x的增加,合金电极内部的氢扩散系数降低.  相似文献   

6.
成型压力对贮氢合金电极性能的影响   总被引:4,自引:1,他引:3  
本文对用做电化学性能测量的电极片的成型压力对贮氢合金粉电化学性能测量结果的影响作了较为深入的研究,发现压力过高、过低均导致活化速度、容量、放电电压特性的降低。压力过低导致电极片寿命的减低,而过高则会导致升高。  相似文献   

7.
贮氢合金电极电化学容量的评价方法   总被引:2,自引:1,他引:2  
本文设计了三种电化学测试系统并进行金属氢化物电极电化学性能对比分析。结果表明,开口式三电极系统测出的放电容量明显高于夹片式和模拟电池所测出的放电容量,而夹片式电极系统测试的结果和模拟电池测试的结果比较一致。基于以上分析与实验结果,作者认为氢化物电极的电化学容量不仅与贮氢合金的本征因素有关,而且与电极制备工艺和电极的工作环境密切相关。  相似文献   

8.
研究了球磨时间及添加CeO2对La2Mg17+200%(质量分数)Ni复合合金相结构和电化学性能的影响.X射线衍射光谱法(XRD)结果表明,球磨100h后Ni峰完全消失,合金完全非晶化,而过长的球磨时间会导致合金小颗粒的团聚和再次结晶化.少量CeO2的添加有助于非晶结构的形成.电化学性能表征显示,随着球磨时间从80、100、120h时,复合合金放电比容量分别为326.9、352.1和352.6 mAh/g,添加CeO2后复合合金放电比容量再度提高到373.5、398.8和409.8mAh/g,均提高40mAh/g以上.但CeO2的加入对复合合金充放电循环稳定性的改善并不明显,结果表明:CeO2的加入,有效地降低了合金表面电化学反应阻抗,提高了贮氢合金的电催化活性,有助于提高放电容量.开路电位图也表明CeO2的加入不利于提高合金的抗腐蚀性能.  相似文献   

9.
微包覆对贮氢电极性能及放电机理的影响   总被引:1,自引:0,他引:1  
用交流阻抗法、恒电位阶跃法和模拟电池充放电实验,研究了贮氢合金表面微包覆处理前后在不同的放电时刻电极表面的电化学反应阻抗、氢在合金中的扩散系数和电极的放电性能。结果表明,在放电末期电极表面电化学阻抗的急剧增大是引起贮氢合金电极放电终止的主要因素;微包覆铜和钴可促进氢的扩散并显著降低电化学反应阻抗,推迟阻抗增大的时间,因而提高了电极的放电性能。  相似文献   

10.
夏同驰  李晓峰  董会超  李超 《电池》2012,42(3):146-148
用改进的Hummers 法制备了石墨氧化物,用化学还原法制得石墨烯聚集物;用研磨法制备了贮氢合金/石墨烯复合材料.循环伏安、线性极化法及模拟电池充放电实验结果表明:与未复合的贮氢合金相比,贮氢合金/石墨烯复合材料降低了电极的极化,改善了大电流放电性能及循环性能.在实验条件下,3.0 C放电比容量达225 mAh/g,提高了64%,平台电压提高了70 mV,5.0 C放电比容量达200 mAh/g,提高了220%,平台电压提高了120 mV.  相似文献   

11.
Ti基AB2 Laves相合金的结构与电化学性能   总被引:1,自引:0,他引:1  
Ti基Laves相贮氢合金具有容量大、活化容易、价格便宜的优点 ,但是循环稳定性不足。综述了近年钛基电极合金的研究发展状况 ,包括该系合金的放电容量、活化性能、循环性能以及各种元素对合金性能的影响。分析了晶体结构与性能的关系。  相似文献   

12.
贮氢合金电极的循环伏安和交流阻抗研究   总被引:4,自引:0,他引:4  
贮氢合金电极的表面处理是改善其电化学性能的有效方法。通过MH电极的循环伏安和电化学阻抗谱研究了碱性溶液中MH电极表面还原处理对其电化学性能的影响。结果表明MH电极表面还原处理后 ,提高了电极的充电效率 ,改善了电极表面的电化学反应活性。通过对MH电极电化学阻抗谱的分析 ,发现这种处理明显降低了电极表面的电化学反应阻抗。  相似文献   

13.
利用高分子导电聚合物的聚合反应对镁系贮氢合金Mg1.8Nd0.2Ni进行表面处理,采用SEM对合金颗粒表面的微观结构进行观察,合金表面形成了一层聚苯胺导电高分子包覆层。研究了不同表面处理时间和处理方式对合金电化学性能的影响,实验表明表面处理能提高材料的抗氧化、抗腐蚀性能,改善电极电化学反应性能延长电极的使用寿命。表面处理提高了合金的活化性能与循环稳定性,容量保持率从77.82%提高到86.31%。EIS图表明包覆层增加了电极表面电荷转移阻抗。Tafel极化曲线中腐蚀电位明显右移,抗腐蚀性能提高,导电高分子层的网状结构加速了氢原子的传导并且阻止了合金表面氧的渗透。另外通过动电位极化曲线发现,表面处理工艺使合金的内部缺陷得到了优化,氢在体相内的扩散速率明显增加。  相似文献   

14.
马建新  陈长聘  潘洪革 《电池》2002,32(Z1):98-100
对无钻AB5型MlNi4.45-xMn0.040Al0.15Snx电极合金相结构和电化学性能进行了研究.XRD分析结果表明:当Sn含量x≥0.3时,合金中除了LaNi5主相外,还存在LaNiSn等第二相,且第二相析出总量随着Sn含量的增大而增加;电化学性能测试结果表明:随着Sn含量的增加,合金的电化学充放电循环稳定性得到改善,但是对合金的放电容量和大电流放电性能有不利的影响;综合比较看,Sn含量x=0.3时合金的电化学性能最好,最大放电容量Cmax=295.0mAh/g,活化次数为2次充放电循环,300次循环后的容量保持率为70.45%,高倍率放电性能HRD900=55.18%.  相似文献   

15.
较系统地研究了循环次数和充放电制度对贮氢合金电极片的电化学行为产生的影响以及测试时应注意的问题,如测量贮氢合金的放电容量和电压特性一般应在第25次~30次循环左右进行、以充放电次数表达的活化速度需注明充放电制度以及测量大电流放电特性应避开小电流放电后的最近几次循环等。  相似文献   

16.
低钴无钴贮氢合金研究的进展   总被引:7,自引:3,他引:7  
李平  王新林  赵韦人  吴建民 《电池》2002,32(4):238-241
综述了低钴、无钴贮氢合金的研究进展,总结评价了开发低钴、无钴贮氢合金的理论指导-循环稳定性理论和开发低钴无钴贮氢合金的一系列方法,其中包括成分的探索方法和特种工艺的运用及在低钴无钴贮氢合金的研究方面取得的成果。  相似文献   

17.
研究了化学镀Ni处理对Mg2Ni贮氢合金电化学性能的影响,结果发现:化学镀Ni处理可显著提高Mg2Ni合金的放电容量,但不能有效提高合金的循环寿命;放电电流对经化学镀Ni处理的Mg2Ni合金的循环寿命影响较大.XRD和SEM分析表明:经化学镀Ni处理的Mg2Ni合金表面覆盖有一层致密的金属Ni细小颗粒;循环伏安(CV)和电化学阻抗谱(EIS)分析表明:化学镀Ni处理降低了合金表面的电子转移阻抗和氢原子扩散阻抗,提高了合金表面的电化学反应活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号