首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cardiac four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) acquisitions have gained increasing clinical interest in recent years. They allow to non‐invasively obtain extensive information about patient‐specific hemodynamics, and thus have a great potential to improve the diagnosis, prognosis and therapy planning of cardiovascular diseases. A dataset contains time‐resolved, three‐dimensional blood flow directions and strengths, making comprehensive qualitative and quantitative data analysis possible. Quantitative measures, such as stroke volumes, help to assess the cardiac function and to monitor disease progression. Qualitative analysis allows to investigate abnormal flow characteristics, such as vortices, which are correlated to different pathologies. Processing the data comprises complex image processing methods, as well as flow analysis and visualization. In this work, we mainly focus on the aorta. We provide an overview of data measurement and pre‐processing, as well as current visualization and quantification methods. This allows other researchers to quickly catch up with the topic and take on new challenges to further investigate the potential of 4D PC‐MRI data.  相似文献   

2.
We present an Aortic Vortex Classification (AVOCLA) that allows to classify vortices in the human aorta semi‐automatically. Current medical studies assume a strong relation between cardiovascular diseases and blood flow patterns such as vortices. Such vortices are extracted and manually classified according to specific, unstandardized properties. We employ an agglomerative hierarchical clustering to group vortex‐representing path lines as basis for the subsequent classification. Classes are based on the vortex' size, orientation and shape, its temporal occurrence relative to the cardiac cycle as well as its spatial position relative to the vessel course. The classification results are presented by a 2D and 3D visualization technique. To confirm the usefulness of both approaches, we report on the results of a user study. Moreover, AVOCLA was applied to 15 datasets of healthy volunteers and patients with different cardiovascular diseases. The results of the semi‐automatic classification were qualitatively compared to a manually generated ground truth of two domain experts considering the vortex number and five specific properties.  相似文献   

3.
A novel method is given for content‐aware video resizing, i.e. targeting video to a new resolution (which may involve aspect ratio change) from the original. We precompute a per‐pixel cumulative shrinkability map which takes into account both the importance of each pixel and the need for continuity in the resized result. (If both x and y resizing are required, two separate shrinkability maps are used, otherwise one suffices). A random walk model is used for efficient offline computation of the shrinkability maps. The latter are stored with the video to create a multi‐sized video, which permits arbitrary‐sized new versions of the video to be later very efficiently created in real‐time, e.g. by a video‐on‐demand server supplying video streams to multiple devices with different resolutions. These shrinkability maps are highly compressible, so the resulting multi‐sized videos are typically less than three times the size of the original compressed video. A scaling function operates on the multi‐sized video, to give the new pixel locations in the result, giving a high‐quality content‐aware resized video. Despite the great efficiency and low storage requirements for our method, we produce results of comparable quality to state‐of‐the‐art methods for content‐aware image and video resizing.  相似文献   

4.
Flow in the great arteries (aorta, pulmonary artery) is normally laminar with a parabolic velocity profile. Eccentric flow jets are linked to various diseases like aneurysms. Cardiac 4D PC‐MRI data provide spatio‐temporally resolved blood flow information for the whole cardiac cycle. In this work, we establish a time‐dependent visualization and quantification of flow jets. For this purpose, equidistant measuring planes are automatically placed along the vessel's centerline. The flow jet position and region with highest velocities are extracted for every plane in each time step. This is done during pre‐processing and without user‐defined parameters. We visualize the main flow jet as geometric tube. High‐velocity areas are depicted as a net around this tube. Both geometries are time‐dependent and can be animated. Quantitative values are provided during cross‐sectional measuring plane‐based evaluation. Moreover, we offer a plot visualization as summary of flow jet characteristics for the selected plane. Our physiologically plausible results are in accordance with medical findings. Our clinical collaborators appreciate the possibility to view the flow jet in the whole vessel at once, which normally requires repeated pathline filtering due to varying velocities along the vessel course. The overview plots are considered as valuable for documentation purposes.  相似文献   

5.
Content‐aware image retargeting is a technique that can flexibly display images with different aspect ratios and simultaneously preserve salient regions in images. Recently many image retargeting techniques have been proposed. To compare image quality by different retargeting methods fast and reliably, an objective metric simulating the human vision system (HVS) is presented in this paper. Different from traditional objective assessment methods that work in bottom‐up manner (i.e., assembling pixel‐level features in a local‐to‐global way), in this paper we propose to use a reverse order (top‐down manner) that organizes image features from global to local viewpoints, leading to a new objective assessment metric for retargeted images. A scale‐space matching method is designed to facilitate extraction of global geometric structures from retargeted images. By traversing the scale space from coarse to fine levels, local pixel correspondence is also established. The objective assessment metric is then based on both global geometric structures and local pixel correspondence. To evaluate color images, CIE L*a*b* color space is utilized. Experimental results are obtained to measure the performance of objective assessments with the proposed metric. The results show good consistency between the proposed objective metric and subjective assessment by human observers.  相似文献   

6.
Color quantization replaces the color of each pixel with the closest representative color, and thus it makes the resulting image partitioned into uniformly-colored regions. As a consequence, continuous, detailed variations of color over the corresponding regions in the original image are lost through color quantization. In this paper, we present a novel blind scheme for restoring such variations from a color-quantized input image without a priori knowledge of the quantization method. Our scheme identifies which pairs of uniformly-colored regions in the input image should have continuous variations of color in the resulting image. Then, such regions are seamlessly stitched through optimization while preserving the closest representative colors. The user can optionally indicate which regions should be separated or stitched by scribbling constraint brushes across the regions. We demonstrate the effectiveness of our approach through diverse examples, such as photographs, cartoons, and artistic illustrations.  相似文献   

7.
A hidden‐picture puzzle contains objects hidden in a background image, in such a way that each object fits closely into a local region of the background. Our system converts image of the background and objects into line drawing, and then finds places in which to hide transformed versions of the objects using rotation‐invariant shape context matching. During the hiding process, each object is subjected to a slight deformation to enhance its similarity to the background. The results were assessed by a panel of puzzle‐solvers.  相似文献   

8.
Annoying shaky motion is one of the significant problems in home videos, since hand shake is an unavoidable effect when capturing by using a hand‐held camcorder. Video stabilization is an important technique to solve this problem, but the stabilized videos resulting from some current methods usually have decreased resolution and are still not so stable. In this paper, we propose a robust and practical method of full‐frame video stabilization while considering user's capturing intention to remove not only the high frequency shaky motions but also the low frequency unexpected movements. To guess the user's capturing intention, we first consider the regions of interest in the video to estimate which regions or objects the user wants to capture, and then use a polyline to estimate a new stable camcorder motion path while avoiding the user's interested regions or objects being cut out. Then, we fill the dynamic and static missing areas caused by frame alignment from other frames to keep the same resolution and quality as the original video. Furthermore, we smooth the discontinuous regions by using a three‐dimensional Poisson‐based method. After the above automatic operations, a full‐frame stabilized video can be achieved and the important regions and objects can also be preserved.  相似文献   

9.
We present an alternative approach to create digital camouflage images which follows human's perception intuition and complies with the physical creation procedure of artists. Our method is based on a two‐scale decomposition scheme of the input images. We modify the large‐scale layer of the background image by considering structural importance based on energy optimization and the detail layer by controlling its spatial variation. A gradient correction is presented to prevent halo artifacts. Users can control the difficulty level of perceiving the camouflage effect through a few parameters. Our camouflage images are natural and have less long coherent edges in the hidden region. Experimental results show that our algorithm yields visually pleasing camouflage images.  相似文献   

10.
This article focuses on real‐time image correction techniques that enable projector‐camera systems to display images onto screens that are not optimized for projections, such as geometrically complex, coloured and textured surfaces. It reviews hardware‐accelerated methods like pixel‐precise geometric warping, radiometric compensation, multi‐focal projection and the correction of general light modulation effects. Online and offline calibration as well as invisible coding methods are explained. Novel attempts in super‐resolution, high‐dynamic range and high‐speed projection are discussed. These techniques open a variety of new applications for projection displays. Some of them will also be presented in this report.  相似文献   

11.
12.
We present a novel image resizing method which attempts to ensure that important local regions undergo a geometric similarity transformation, and at the same time, to preserve image edge structure. To accomplish this, we define handles to describe both local regions and image edges, and assign a weight for each handle based on an importance map for the source image. Inspired by conformal energy, which is widely used in geometry processing, we construct a novel quadratic distortion energy to measure the shape distortion for each handle. The resizing result is obtained by minimizing the weighted sum of the quadratic distortion energies of all handles. Compared to previous methods, our method allows distortion to be diffused better in all directions, and important image edges are well‐preserved. The method is efficient, and offers a closed form solution.  相似文献   

13.
Studying transformation in a chemical system by considering its energy as a function of coordinates of the system's components provides insight and changes our understanding of this process. Currently, a lack of effective visualization techniques for high‐dimensional energy functions limits chemists to plot energy with respect to one or two coordinates at a time. In some complex systems, developing a comprehensive understanding requires new visualization techniques that show relationships between all coordinates at the same time. We propose a new visualization technique that combines concepts from topological analysis, multi‐dimensional scaling, and graph layout to enable the analysis of energy functions for a wide range of molecular structures. We demonstrate our technique by studying the energy function of a dimer of formic and acetic acids and a LTA zeolite structure, in which we consider diffusion of methane.  相似文献   

14.
Restoration of the photographs damaged by the camera shake is a challenging task that manifested increasing attention in the recent period. Despite of the important progress of the blind deconvolution techniques, due to the ill-posed nature of the problem, the finest details of the kernel blur cannot be recovered entirely. Moreover, the additional constraints and prior assumptions make these approaches to be relative limited.
In this paper we introduce a novel technique that removes the undesired blur artifacts from photographs taken by hand-held digital cameras. Our approach is based on the observation that in general several consecutive photographs taken by the users share image regions that project the same scene content. Therefore, we took advantage of additional sharp photographs of the same scene. Based on several invariant local feature points, filtered from the given blurred/non-blurred images, our approach matches the keypoints and estimates the blur kernel using additional statistical constraints.
We also present a simple deconvolution technique that preserves edges while minimizing the ringing artifacts in the restored latent image. The experimental results prove that our technique is able to infer accurately the blur kernel while reducing significantly the artifacts of the spoilt images.  相似文献   

15.
The topological structure of scalar, vector, and second‐order tensor fields provides an important mathematical basis for data analysis and visualization. In this paper, we extend this framework towards higher‐order tensors. First, we establish formal uniqueness properties for a geometrically constrained tensor decomposition. This allows us to define and visualize topological structures in symmetric tensor fields of orders three and four. We clarify that in 2D, degeneracies occur at isolated points, regardless of tensor order. However, for orders higher than two, they are no longer equivalent to isotropic tensors, and their fractional Poincaré index prevents us from deriving continuous vector fields from the tensor decomposition. Instead, sorting the terms by magnitude leads to a new type of feature, lines along which the resulting vector fields are discontinuous. We propose algorithms to extract these features and present results on higher‐order derivatives and higher‐order structure tensors.  相似文献   

16.
One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.  相似文献   

17.
This paper investigates a new approach for color transfer. Rather than transferring color from one image to another globally, we propose a system with a stroke‐based user interface to provide a direct indication mechanism. We further present a multiple local color transfer method. Through our system the user can easily enhance a defect (source) photo by referring to some other good quality (target) images by simply drawing some strokes. Then, the system will perform the multiple local color transfer automatically. The system consists of two major steps. First, the user draws some strokes on the source and target images to indicate corresponding regions and also the regions he or she wants to preserve. The regions to be preserved which will be masked out based on an improved graph cuts algorithm. Second, a multiple local color transfer method is presented to transfer the color from the target image(s) to the source image through gradient‐guided pixel‐wise color transfer functions. Finally, the defect (source) image can be enhanced seamlessly by multiple local color transfer based on some good quality (target) examples through an interactive and intuitive stroke‐based user interface.  相似文献   

18.
This paper introduces a novel facial editing tool, called edge‐aware mask, to achieve multiple photo‐realistic rendering effects in a unified framework. The edge‐aware masks facilitate three basic operations for adaptive facial editing, including region selection, edit setting and region blending. Inspired by the state‐of‐the‐art edit propagation and partial differential equation (PDE) learning method, we propose an adaptive PDE model with facial priors for masks generation through edge‐aware diffusion. The edge‐aware masks can automatically fit the complex region boundary with great accuracy and produce smooth transition between different regions, which significantly improves the visual consistence of face editing and reduce the human intervention. Then, a unified and flexible facial editing framework is constructed, which consists of layer decomposition, edge‐aware masks generation, and layer/mask composition. The combinations of multiple facial layers and edge‐aware masks can achieve various facial effects simultaneously, including face enhancement, relighting, makeup and face blending etc. Qualitative and quantitative evaluations were performed using different datasets for different facial editing tasks. Experiments demonstrate the effectiveness and flexibility of our methods, and the comparisons with the previous methods indicate that improved results are obtained using the combination of multiple edge‐aware masks.  相似文献   

19.
Creating variations of an image object is an important task, which usually requires manipulating the skeletal structure of the object. However, most existing methods (such as image deformation) only allow for stretching the skeletal structure of an object: modifying skeletal topology remains a challenge. This paper presents a technique for synthesizing image objects with different skeletal structures while respecting to an input image object. To apply this technique, a user firstly annotates the skeletal structure of the input object by specifying a number of strokes in the input image, and draws corresponding strokes in an output domain to generate new skeletal structures. Then, a number of the example texture pieces are sampled along the strokes in the input image and pasted along the strokes in the output domain with their orientations. The result is obtained by optimizing the texture sampling and seam computation. The proposed method is successfully used to synthesize challenging skeletal structures, such as skeletal branches, and a wide range of image objects with various skeletal structures, to demonstrate its effectiveness.  相似文献   

20.
Intravascular imaging provides new insights into the condition of vessel walls. This is crucial for cerebrovascular diseases including stroke and cerebral aneurysms, where it may present an important factor for indication of therapy. In this work, we provide new information of cerebral artery walls by combining ex vivo optical coherence tomography (OCT) imaging with histology data sets. To overcome the obstacles of deflated and collapsed vessels due to the missing blood pressure, the lack of co‐alignment as well as the geometrical shape deformations due to catheter probing, we developed the new image processing method virtual inflation. We locally sample the vessel wall thickness based on the (deflated) vessel lumen border instead of the vessel's centerline. Our method is embedded in a multi‐view framework where correspondences between OCT and histology can be highlighted via brushing and linking yielding OCT signal characteristics of the cerebral artery wall and its pathologies. Finally, we enrich the data views with a hierarchical clustering representation which is linked via virtual inflation and further supports the deduction of vessel wall pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号